\
JAKARTA EE

Jakarta Connectors

Jakarta Connectors Team, https://projects.eclipse.org/projects/ee4j.jca

2.1, 17 April 2022

Table of Contents

Eclipse Foundation Specification License
Disclaimers
1. Jakarta Connectors, Version 2.1
2. Introduction
2.1. Overview
2.2. Scope
2.3. Target Audience
2.4. JDBC and Jakarta Connectors

2.5. Relationship With Other Integration Technologies (JBI and SCA)

2.6. Organization
2.7. Document Conventions
3. Overview

3.1. Definitions

3.1.1. Enterprise Information System (EIS)

3.1.2. Connector Architecture
3.1.3. EIS Resource
3.1.4. Resource Manager (RM)
3.1.5. Managed Environment
3.1.6. Non-Managed Environment
3.1.7. Connection
3.1.8. Application Component
3.1.9. Container

3.2. Rationale
3.2.1. System Contracts
3.2.2. Common Client Interface

3.3. Goals

4. Architecture of Jakarta Connectors

4.1. System Contracts

4.2. Client API

4.3. Requirements

4.4. Non-Managed Environment

4.5. Standalone Container Environment

5. Roles and Scenarios
5.1. Roles
5.1.1. Resource Adapter Provider
5.1.2. Application Server Vendor

© © © © © W0 I 9 O O U b= = W N =

T N e Y
© © © © I 9 9 0O b b W N R R =B O o o o o

5.1.3. Container Provider
5.1.4. Application Component Provider
5.1.5. Enterprise Tools Vendors
5.1.6. Application Assembler
5.1.7. Deployer
5.1.8. System Administrator
5.2. Scenario: Integrated Purchase Order System
5.2.1. Illustration of a Scenario Based on the Connector Architecture
5.3. Scenario: Business Integration
5.3.1. Connector Architecture Usage in Business Integration Scenario
6. Lifecycle Management
6.1. Overview
6.2. Goals
6.3. Lifecycle Management Model
6.3.1. ResourceAdapter JavaBean and Bootstrapping a Resource Adapter Instance
6.3.2. ManagedConnectionFactory JavaBean and Outbound Communication
6.3.3. ActivationSpec JavaBean and Inbound Communication
6.3.4. Resource Adapter Shutdown Procedure
6.3.4.1. Phase One
6.3.4.2. Phase Two
6.3.5. Requirements
6.3.6. Resource Adapter Implementation Guidelines
6.3.7. JavaBean Configuration and Deployment
6.3.7.1. ResourceAdapter JavaBean Instance Configuration
6.3.7.2. Resource Adapter Deployment
6.3.7.3. ManagedConnectionFactory JavaBean Instance Configuration
6.3.7.4. ActivationSpec JavaBean Instance Configuration
6.3.7.5. JavaBean Validation
6.3.7.6. Configuration Property Attributes
6.3.7.7. Resource Adapter Implementation Guidelines
6.3.8. Lifecycle Management in a Non-Managed Environment
6.3.9. A Sample Resource Adapter Implementation
7. Connection Management
7.1. Overview
7.2. Goals
7.3. Architecture: Connection Management
7.3.1. Overview: Managed Application Scenario

7.4. Application Programming Model

19
20
20
21
21
22
22
22
24
25
26
26
26
26
27
29
30
31
32
32
33
34
34
34
35
35
35
36
37
38
38
38
41
41
41
42
42
43

7.4.1. Managed Application Scenario
7.4.2. Non-Managed Application Scenario
7.4.3. Guidelines
7.5. Interface/Class Specification
7.5.1. ConnectionFactory and Connection [3]
7.5.1.1. Requirements
7.5.1.2. ConnectionRequestInfo
7.5.1.3. Additional Requirements
7.5.2. ConnectionManager
7.5.2.1. Interface
7.5.2.2. Requirements
7.5.3. ManagedConnectionFactory
7.5.3.1. Interface
7.5.3.2. Requirements
7.5.3.3. Connection Pool Implementation
7.5.3.4. Detecting Invalid Connections
7.5.3.5. Requirement for XA Recovery
7.5.4. ManagedConnection
7.5.4.1. Interface
7.5.4.2. Connection Sharing and Multiple Connection Handles
7.5.4.3. Connection Matching Contract
7.5.4.4. Cleanup of ManagedConnection
7.5.4.5. Requirements
7.5.5. ManagedConnectionMetaData
7.5.5.1. Interface
7.5.5.2. Requirements
7.5.6. ConnectionEventListener
7.5.6.1. Interface
7.5.7. ConnectionEvent
7.6. Error Logging and Tracing
7.6.1. ManagedConnectionFactory
7.6.2. ManagedConnection
7.7. Object Diagram
7.8. llustrative Scenarios
7.8.1. Scenario: Connection Pool Management
7.8.2. Scenario: Connection Matching
7.8.3. Scenario: Connection Event Notifications and Connection Close

7.8.3.1. Connection Cleanup

44
435
435
46
47
49
50
51
51
51
52
53
53
55
55
56
56
57
57
59
59
60
60
61
61
61
61
61
63
63
63
64
64
65
66
68
70
71

7.8.3.2. Connection Destroy
7.9. Architecture: Non-Managed Environment
7.9.1. Scenario: Programmatic Access to ConnectionFactory
7.9.2. Scenario: Connection Creation in Non-Managed Application Scenario
7.10. Requirements
7.10.1. Resource Adapter
7.10.2. Application Server
8. Transaction Management
8.1. Overview
8.2. Transaction Management Scenarios
8.2.1. Transactions Across Multiple Resource Managers
8.2.2. Local Transaction Management
8.3. Transaction Management Contract
8.3.1. Interface: ManagedConnection
8.3.2. Interface: XAResource
8.3.2.1. Implementation
8.3.3. Interface: LocalTransaction
8.4. Relationship to Jakarta Transaction and JTS
8.4.1. Jakarta Transaction Interfaces
8.5. Object Diagram
8.6. XAResource-based Transaction Contract
8.6.1. Scenarios Supported
8.6.2. Resource Adapter Requirements
8.6.2.1. General
8.6.2.2. One-phase Commit
8.6.2.3. Two-phase Commit
8.6.2.4. Transaction Association and Calling Protocol
8.6.2.5. Unilateral Roll-back
8.6.2.6. Read-Only Optimization
8.6.2.7. XID Support
8.6.2.8. Support for Failure Recovery
8.6.3. Transaction Manager Requirements
8.6.3.1. Interfaces
8.6.3.2. XID Requirements
8.6.3.3. One-phase Commit Optimization
8.6.3.4. Implementation Options
8.6.4. Scenario: Transactional Setup for a ManagedConnection

8.6.5. Scenario: Connection Close and Jakarta Transaction Transactional Cleanup

71
72
73
75
76
76
77
79
79
80
80
81
82
83
84
85
86
86
86
87
88
88
89
90
90
90
91
91
91
91
92
92
92
92
92
93
93
95

8.6.6. OID: Transaction Completion
8.7. Local Transaction Management Contract
8.7.1. Interface: LocalTransaction
8.7.2. Interface: ConnectionEventListener
8.7.2.1. Requirements
8.8. Scenarios: Local Transaction Management
8.8.1. Local Transaction Cleanup
8.8.2. Component Termination
8.8.3. Transaction Interleaving
8.8.4. Scenario
8.9. Connection Sharing
8.9.1. Sharing Violation Detection
8.9.1.1. Scenario 1
8.9.1.2. Scenario 2
8.10. Transaction Scenarios
8.10.1. Requirements
8.10.2. Illustrative Scenarios
8.10.3. Scenario: Local Transaction
8.11. Connection Association
8.11.1. Scenario
8.11.2. Connection Association
8.11.3. Requirements
8.12. Local Transaction Optimization

8.12.1. Requirements

8.13. Runtime Transaction Support Level Specification

8.14. Interface: TransactionSynchronizationRegistry
8.15. Requirements
8.15.1. Resource Adapter
8.15.1.1. Auto Commit
8.15.2. Application Server
8.16. Connection Optimizations
8.16.1. Lazy Connection Association Optimization
8.16.1.1. API Additions
8.16.2. Lazy Transaction Enlistment Optimization
8.16.3. API Additions
9. Security Architecture
9.1. Overview
9.2. Goals

96

97

98

98

99

99
100
100
100
100
101
102
102
103
103
103
104
105
108
109
110
110
111
111
111
113
113
113
114
114
115
115
117
118
118
120
120
120

9.3. Terminology
9.4. Application Security Model
9.4.1. Scenario: Container-Managed Sign-on
9.4.2. Scenario: Component-Managed Sign-on
9.5. EIS Sign-on
9.5.1. Authentication Mechanism
9.5.2. Resource Principal
9.5.3. Authorization Model
9.5.4. Secure Association
9.6. Roles and Responsibilities
9.6.1. Application Component Provider
9.6.2. Deployer
9.6.3. Application Server
9.6.4. EIS Vendor
9.6.5. Resource Adapter Provider
9.6.6. System Administrator
10. Security Contract
10.1. Security Contract
10.1.1. Interfaces and Classes
10.1.2. Subject
10.1.3. Resource Principal
10.1.4. GenericCredential
10.1.4.1. Interface
10.1.4.2. Implementation
10.1.5. GSSCredential
10.1.5.1. Implementation
10.1.6. PasswordCredential
10.1.7. ConnectionManager
10.1.8. ManagedConnectionFactory
10.1.8.1. Contract for the Application Server
10.1.8.2. Contract for Resource Adapter
10.1.9. ManagedConnection
10.2. Requirements
10.2.1. Resource Adapter
10.2.2. Application Server
11. Work Management
11.1. Overview
11.2. Goals

121
122
122
123
124
124
124
125
126
127
127
127
128
128
128
129
130
130
130
130
131
131
132
133
133
133
133
134
135
136
138
140
141
141
141
143
143
144

11.3. Work Management Model
11.3.1. Requirements
11.3.2. Work Interface
11.3.3. WorkManager Interface
11.3.3.1. Work Submit
11.3.3.2. Work Accepted
11.3.3.3. Work Rejected
11.3.3.4. Work Started
11.3.3.5. Work Completed
11.3.3.6. Requirements
11.3.4. WorkListener Interface and WorkEvent Class
11.3.4.1. Requirements
11.3.5. ExecutionContext Class
11.3.6. Resource Adapter Thread Usage Recommendations
11.4. Periodic Execution of Work Instances
11.4.1. Tllustration: Using a Work Instance to Listen on Multiple Network Endpoints
11.4.2. Work Management in a Non-Managed Environment
11.4.3. Resource Adapter association
11.4.4. Distributed Work processing
11.4.4.1. DistributableWork Interface
11.4.4.2. DistributableWorkManager Interface
11.4.4.3. DistributableWork Submission and Processing
12. Generic Work Context
12.1. Overview
12.2. Goals
12.3. Generic Work Context Model
12.3.1. Standard and Custom Work Contexts
12.3.2. Requirements
12.4. WorkContextProvider and WorkContext Interface
12.4.1. Indicating Support for a WorkContext Type
12.4.2. Checking Support for a WorkContext Type
12.4.3. Handling Errors During Context Assignment
12.5. TransactionContext Class
12.6. HintsContext Interface
12.6.1. Standard Hints
12.6.1.1. Work Name Hint
12.6.1.2. Long-running Work instance Hint

12.7. WorkContextLifecycleListener Interface

144
144
150
151
152
153
153
153
153
154
155
158
158
159
160
161
162
162
162
162
163
164
166
166
166
167
167
168
172
174
175
175
177
178
180
180
180
180

12.8. Illustrative Example
13. Inbound Communicaton
13.1. Overview
13.2. An Illustrative Use Case
14. Message Inflow
14.1. Overview
14.2. Goals
14.3. Message Inflow Model
14.4. Endpoint Deployment
14.4.1. Message Endpoint
14.4.2. Resource Adapter
14.4.2.1. List of Supported Message Listener Types
14.4.2.2. ActivationSpec JavaBean
14.4.2.3. Administered Objects
14.4.2.4. Configuring Administered Objects
14.4.3. Endpoint Deployer
14.4.4. Application Server
14.4.5. Message Provider
14.4.6. Endpoint Deployment Steps
14.4.7. Requirements
14.4.8. Structure of a Message Listener Interface
14.4.9. Multiple Endpoint Activations With Similar Activation Configuration
14.4.9.1. Requirements
14.5. Message Delivery
14.5.1. Sample Resource Adapter Code To Illustrate Message Delivery
14.5.1.1. Requirements
14.5.2. Message Redelivery Upon Crash Recovery
14.5.3. Durable Message Delivery Setup
14.5.4. Concurrent Delivery of Messages
14.5.4.1. Requirements
14.5.5. Delivery Semantics and Acknowledgement
14.5.6. Transacted Delivery (Using Container-Managed Transaction)
14.5.7. Non-Transacted Delivery
14.5.8. Transacted Delivery Using an Imported Transaction
14.5.9. Requirements
14.6. Endpoint Undeployment
14.7. Jakarta Messaging Use Case

14.7.1. Message-Driven Bean Asynchronously Receiving Messages

182
186
186
186
188
188
189
189
195
196
197
198
198
199
200
200
200
201
202
203
203
204
204
205
206
208
208
209
210
210
210
211
213
214
214
215
219
225

14.7.1.1. Message-Driven Bean Deployment 225
14.7.1.2. Message Delivery 225
14.7.1.3. Message-Driven Bean Undeployment 226
14.7.2. Jakarta Enterprise Beans Using Jakarta Messaging API to Send and Synchronously Recei26

Messages Via a Jakarta Messaging Resource Adapter

14.7.2.1. Using Jakarta Messaging API to Send Messages 226
14.7.2.2. Jakarta EE Component Using Jakarta Messaging API to Synchronously Receive 227
Messages
14.8. A Non-Jakarta Messaging Use Case 228
14.9. Resource Adapter Deployment Descriptor 228
14.9.1. Resource Adapter Deployment 230
14.9.2. Message-Driven Bean Asynchronously Receiving Notifications From an EIS 230
14.9.2.1. The Message-Driven Bean Deployment Descriptor 230
14.9.3. Message-Driven Bean and Resource Adapter Activation 232
14.9.4. Message Delivery 233
15. Jakarta Enterprise Beans Invocation 234
15.1. Overview 234
15.2. Jakarta Enterprise Beans Invocation Model 234
15.3. An Illustrative Use Case 235
15.3.1. Message-Driven Bean Dispatcher Pattern 237
16. Transaction Inflow 238
16.1. Overview 238
16.2. Goals 238
16.3. Use Case Scenario 239
16.4. Transaction Inflow Model 240
16.4.1. Processing of Transactional Calls 240
16.4.2. Transaction Completion Processing 241
16.4.3. Crash Recovery Processing 243
16.4.4. Requirements 245
16.4.5. Non-Requirements 246
16.4.6. Recommendations 247
16.5. Transaction Inflow in a Non-Managed Environment 247
17. Security Inflow 248
17.1. Overview 248
17.2. Goals 248
17.3. Security Inflow Model 249
17.4. SecurityContext Class 253

17.4.1. Establishing the Security Context 254

17.4.2. Callbacks for Information from the Application Server
17.4.3. Case 1: Identity in the Container Security Domain
17.4.4. Case 2: Identity Translated Between Security Domains
17.4.5. Establising a Principal as the Caller Identity
17.4.5.1. Case A: Establishing a Single Principal as the Caller Identity
17.4.5.2. Case B: Establishing an Unauthenticated Security Context
17.4.6. Security Configuration Responsibilities
17.5. Requirements
17.6. Illustrative Example
17.6.1. Case 1: Identity in the Container Security Domain
17.6.2. Case 2: Identity Translated Between Security Domains
18. Common Client Interface
18.1. Overview
18.2. Goals
18.3. Scenarios
18.3.1. Enterprise Application Integration Framework
18.3.2. Metadata Repository and API
18.3.3. Enterprise Application Development Tool
18.4. Common Client Interface
18.4.1. Requirements
18.5. Connection Interfaces
18.5.1. ConnectionFactory
18.5.2. Requirements
18.6. ConnectionSpec
18.6.1. Connection
18.6.1.1. Auto Commit
18.7. Interaction Interfaces
18.7.1. Interaction
18.7.2. InteractionSpec
18.7.2.1. Standard Properties
18.7.2.2. ResultSet Properties
18.7.2.3. Additional Properties
18.7.2.4. Implementation
18.7.2.5. Administered Object
18.7.2.6. Illustrative Scenario
18.7.3. LocalTransaction
18.7.3.1. Requirements
18.8. Basic Metadata Interfaces

256
257
258
260
261
261
262
263
263
263
265
267
267
267
268
268
268
268
269
270
271
271
272
273
273
274
275
275
276
276
277
278
278
278
278
279
279
279

18.8.1. ConnectionMetaData
18.8.1.1. Implementation
18.8.2. ResourceAdapterMetaData
18.9. Service Endpoint Message Listener Interface
18.10. Exception Interfaces
18.10.1. ResourceException
18.10.2. ResourceWarning
18.11. Record
18.11.1. Component-View Contract
18.11.1.1. Type Mapping
18.11.1.2. Record Interface
18.11.1.3. MappedRecord and IndexedRecord Interfaces
18.11.1.4. RecordFactory
18.11.2. Interaction and Record
18.11.3. Resource Adapter-view Contract
18.11.3.1. Streamable Interface
18.12. ResultSet
18.12.1. ResultSet Interface
18.12.1.1. Type Mapping
18.12.1.2. ResultSet Types
18.12.1.3. Scrolling
18.12.1.4. Concurrency Types
18.12.1.5. Updatability
18.12.1.6. Persistence of Java Objects
18.12.1.7. Support for SQL Types
18.12.1.8. Support for Customized SQL Type Mapping
18.12.2. ResultSetMetaData
18.12.3. ResultSetInfo
18.13. Code Samples
18.13.1. Connection
18.13.2. InteractionSpec
18.13.3. Mapped Record
18.13.4. ResultSet
18.13.5. Custom Record
19. Metadata Annotations
19.1. Overview
19.2. Goals

19.3. Deployment Descriptors and Annotations

280
280
280
282
282
282
282
283
284
284
285
286
287
287
288
288
289
291
291
291
291
292
292
292
293
293
293
293
295
295
295
296
297
298
300
300
300
300

19.3.1. metadata-complete Deployment Descriptor Element
19.3.2. Merging Annotations and Deployment Descriptor
19.3.3. Annotation Processing Requirements of Superclasses
19.4. @Connector
19.4.1. Implementing the ResourceAdapter Interface
19.4.2. Example
19.4.3. @AuthenticationMechanism
19.4.4. @SecurityPermission
19.5. @ConfigProperty
19.5.1. Discovery of Configuration Properties
19.6. @ConnectionDefinition and @ConnectionDefinitions
19.6.1. Example
19.7. @Activation
19.7.1. Example
19.8. @AdministeredObject
19.9. Resource Definition Annotations
19.9.1. @ConnectionFactoryDefinition
19.9.1.1. Example
19.9.2. @ConnectionFactoryDefinitions
19.9.2.1. Example
19.9.3. @AdministeredObjectDefinition
19.9.3.1. Example
19.9.4. @AdministeredObjectDefinitions
19.9.4.1. Example
20. API Requirements
20.1. Requirements of the Application Server
20.2. Requirements of the Resource adapter
20.3. JavaBean Requirements
20.4. Equality Constraints
20.4.1. Equality based on Java Object Identity
20.4.2. Equality Based on Config Properties and Class Information
21. Packaging Requirements
21.1. Overview
21.2. Packaging
21.2.1. Resource Adapter Archive
21.2.2. RAR Contents
21.2.3. Sample Directory Structure

21.2.4. Requirements

301
302
303
303
305
305
306
307
307
309
309
310
311
311
312
313
314
315
316
316
317
319
319
320
322
322
322
323
323
323
323
325
325
326
327
327
328
328

21.3. Class Loading Requirements
21.4. Deployment
21.4.1. Resource Adapter Provider
21.4.2. Deployer
21.4.2.1. Standalone Resource Adapter Module
21.4.2.2. Resource Adapter Module with Jakarta EE Application
21.4.2.3. Configuration
21.4.2.4. Security Configuration
21.5. Interfaces/Classes
21.5.1. ResourceAdapter
21.5.1.1. Requirements
21.5.2. ManagedConnectionFactory
21.5.2.1. Requirements
21.5.3. Properties Conventions
21.5.4. Standard Properties
21.6. JNDI Configuration and Lookup
21.6.1. Responsibilities
21.6.1.1. Deployer
21.6.1.2. Resource Adapter
21.6.1.3. Application Server
21.6.2. Scenario: Serializable
21.6.3. Scenario: Referenceable
21.6.3.1. ObjectFactory Implementation
21.6.3.2. Deployment
21.6.3.3. Scenario: Connection Factory Lookup
21.6.4. Requirements
21.7. Resource Adapter XML Schema Definition
22. Runtime Environment
22.1. Programming APIs
22.2. Security Permissions
22.3. Requirements
22.3.1. Example
22.4. Privileged Code
22.4.1. Example
22.5. Dependency Injection
23. Exceptions
23.1. ResourceException

23.2. System Exceptions

329
329
330
332
333
333
333
333
334
334
334
334
335
335
335
336
336
337
337
337
338
339
340
341
342
344
345
370
370
370
373
373
374
374
375
377
377
377

23.2.1. Exception Hierarchy
23.3. Work Exceptions
23.4. Additional Exceptions
24. Compatibility and Migration
24.1. Compatibility
25. Caching Manager
25.1. Overview
26. Synchronization Contract
26.1. Interface
26.2. Implementation
27. Security Scenarios
27.1. eStore Application
27.1.1. Scenario
27.1.2. Security Environment
27.1.3. Deployment
27.2. Employee Self-Service Application
27.2.1. Architecture
27.2.2. Security Environment
27.2.3. Deployment
27.2.4. Scenario
27.3. Integrated Purchasing Application
27.3.1. Architecture
27.3.2. Security Environment
27.3.3. Deployment
28. JAAS Based Security Architecture
28.1. Java Authentication and Authorization Service (JAAS)
28.2. Requirements
28.3. Security Architecture
28.3.1. JAAS Modules
28.3.2. llustrative Examples: JAAS Module
28.3.2.1. Principal Mapping Module
28.3.2.2. Credential Mapping Module
28.3.2.3. Kerberos Module
28.4. Security Configuration
28.4.1. JAAS Configuration
28.5. Scenarios
28.5.1. Scenario: Resource Adapter Managed Authentication

28.5.2. Scenario: Kerberos and Principal Delegation

378
380
380
381
381
382
382
384
384
384
385
385
386
386
387
388
388
388
389
389
390
390
391
391
393
393
393
394
394
395
395
395
396
397
397
397
397
398

28.5.3. Scenario: GSS-API 399
28.5.4. Scenario: Kerberos Authentication After Principal Mapping 400
28.5.5. Scenario: EIS-Specific Authentication 401

Eclipse Foundation Specification License

Specification: Jakarta Connectors
Version: 2.1
Status: Final

Release: 17 April 2022
Copyright (c) 2018, 2022 Eclipse Foundation.

Eclipse Foundation Specification License

By using and/or copying this document, or the Eclipse Foundation document from which this statement
is linked, you (the licensee) agree that you have read, understood, and will comply with the following
terms and conditions:

Permission to copy, and distribute the contents of this document, or the Eclipse Foundation document
from which this statement is linked, in any medium for any purpose and without fee or royalty is
hereby granted, provided that you include the following on ALL copies of the document, or portions
thereof, that you use:

* link or URL to the original Eclipse Foundation document.

 All existing copyright notices, or if one does not exist, a notice (hypertext is preferred, but a textual
representation is permitted) of the form: "Copyright (c) [$date-of-document] Eclipse Foundation,
Inc. https://www.eclipse.org/legal/efsl.php”

Inclusion of the full text of this NOTICE must be provided. We request that authorship attribution be
provided in any software, documents, or other items or products that you create pursuant to the
implementation of the contents of this document, or any portion thereof.

No right to create modifications or derivatives of Eclipse Foundation documents is granted pursuant to
this license, except anyone may prepare and distribute derivative works and portions of this document
in software that implements the specification, in supporting materials accompanying such software,
and in documentation of such software, PROVIDED that all such works include the notice below.
HOWEVER, the publication of derivative works of this document for use as a technical specification is
expressly prohibited.

The notice is:

"Copyright (c) 2018, 2022 Eclipse Foundation. This software or document includes material copied from
or derived from Jakarta™ Connectors https://jakarta.ee/specifications/connectors/2.1/"

Jakarta Connectors 1

https://www.eclipse.org/legal/efsl.php
https://jakarta.ee/specifications/connectors/2.1/

Eclipse Foundation Specification License

Disclaimers

THIS DOCUMENT IS PROVIDED "AS IS," AND THE COPYRIGHT HOLDERS AND THE ECLIPSE
FOUNDATION MAKE NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED, INCLUDING,
BUT NOT LIMITED TO, WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE,
NON-INFRINGEMENT, OR TITLE; THAT THE CONTENTS OF THE DOCUMENT ARE SUITABLE FOR ANY
PURPOSE; NOR THAT THE IMPLEMENTATION OF SUCH CONTENTS WILL NOT INFRINGE ANY THIRD
PARTY PATENTS, COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS.

THE COPYRIGHT HOLDERS AND THE ECLIPSE FOUNDATION WILL NOT BE LIABLE FOR ANY DIRECT,
INDIRECT, SPECIAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF ANY USE OF THE DOCUMENT OR
THE PERFORMANCE OR IMPLEMENTATION OF THE CONTENTS THEREOF.

The name and trademarks of the copyright holders or the Eclipse Foundation may NOT be used in
advertising or publicity pertaining to this document or its contents without specific, written prior
permission. Title to copyright in this document will at all times remain with copyright holders.

2 Jakarta Connectors

Chapter 1. Jakarta Connectors, Version 2.1

Chapter 1. Jakarta Connectors, Version 2.1

Copyright (c) 2013, 2022 Eclipse Foundation, Oracle and/or its affiliates

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Jakarta Connectors 3

2.1. Overview

Chapter 2. Introduction

The Jakarta Platform, Enterprise Edition (Jakarta EE platform) provides containers for client
applications, web components based on Jakarta Servlets and Jakarta Server Pages and Jakarta
Enterprise Beans components. These containers provide deployment and runtime support for
application components. They provide a federated view of the services provided by the underlying
application server for the application components.

Containers can run on existing systems; for example, web servers for the web containers; application
servers, TP monitors, and database systems for Enterprise Bean containers. This enables enterprises to
leverage both the advantages of their existing systems and those of Jakarta EE. Enterprises can write,
or rewrite, new applications using Jakarta EE capabilities and can also encapsulate parts of existing
applications in Enterprise Beans, Jakarta Server Pages or servlets.

Enterprise applications access functions and data associated with applications running on Enterprise
Information Systems (EIS). Application servers extend their containers and support connectivity to
heterogeneous EISs. Enterprise tools and Enterprise Application Integration (EAI) vendors add value
by providing tools and frameworks to simplify the EIS integration task.

For enterprise application integration, bi-directional connectivity between enterprise applications and
EIS is essential. Jakarta Connectors defines standard contracts that allow bi-directional connectivity
between enterprise applications and EISs. It also formalizes the relationships, interactions, and the
packaging of the integration layer, thus enabling enterprise application integration.

2.1. Overview

Jakarta Connectors defines a standard architecture for connecting the Jakarta EE platform to
heterogeneous EISs. Examples of EISs include Enterprise Resource Planning (ERP), mainframe
transaction processing (TP), and database systems.

Jakarta Connectors defines a set of scalable, secure, and transactional mechanisms that enable the
integration of EISs with application servers1 and enterprise applications.

Jakarta Connectors also defines a Common Client Interface (CCI) for EIS access. The CCI defines a client
API for interacting with heterogeneous EISs.

Jakarta Connectora enables an EIS vendor to provide a standard resource adapter for its EIS. A
resource adapter is a system-level software driver that is used by a Java application to connect to an
EIS. The resource adapter plugs into an application server and provides connectivity between the EIS,
the application server, and the enterprise application. The resource adapter serves as a protocol
adapter that allows any arbitrary EIS communication protocol to be used for connectivity.

An application server vendor extends its system once to support the connector architecture and is then
assured of seamless connectivity to multiple EISs. Likewise, an EIS vendor provides one standard
resource adapter which has the capability to plug in to any application server that supports the

4 Jakarta Connectors

#a10022

2.2. Scope

connector architecture.

2.2. Scope
Version 2.1 of the connector architecture defines:

* A standard set of system-level contracts between an application server and EIS. These contracts
focus on the important system-level aspects of integration: connection management, transaction
management, and security.

* A Common Client Interface (CCI) that defines a client API for interacting with multiple EISs.

* A standard deployment and packaging protocol for resource adapters.
Refer to section 2.2.2 for the rationale behind the Common Client Interface.

» Lifecycle management contract. A contract between an application server and a resource adapter
that allows an application server to manage the lifecycle of a resource adapter. This contract
provides a mechanism for the application server to bootstrap a resource adapter instance during
its deployment or application server startup, and to notify the resource adapter instance during its
undeployment or during an orderly shutdown of the application server.

* Work management contract. A contract between an application server and a resource adapter
that allows a resource adapter to do work (monitor network endpoints, call application
components, etc.) by submitting Work instances to an application server for execution. The
application server dispatches threads to execute submitted Work instances. This allows a resource
adapter to avoid creating or managing threads directly, and allows an application server to
efficiently pool threads and have more control over its runtime environment. The resource adapter
can control the security context and transaction context with which Work instances are executed.

* Transaction inflow contract. A contract between an application server and a resource adapter
that allows a resource adapter to propagate an imported transaction to an application server. This
contract also allows a resource adapter to transmit transaction completion and crash recovery calls
initiated by an EIS, and ensures that the ACID (Atomicity, Consistency, Isolation and Durability)
properties of the imported transaction are preserved.

* Message inflow contract. A standard, generic contract between an application server and a
resource adapter that allows a resource adapter to asynchronously deliver messages to message
endpoints residing in the application server independent of the specific messaging style, messaging
semantics, and messaging infrastructure used to deliver messages. This contract also serves as the
standard message provider pluggability contract that allows a wide range of message providers
(Java Message Service (JMS), Java API for XML Messaging (JAXM), etc.) to be plugged into any Java
EE compatible application server by way of a resource adapter.

* Packaging Model. Describes the packaging model for different types of resource adapters
(outbound only, inbound only, or both).

* Generic work context contract. A generic contract that enables a resource adapter to control the
execution context of a Work instance that it has submitted to the application server for execution.

Jakarta Connectors 5

2.3. Target Audience

The Generic work contract provides the mechanism for a resource adapter to augment the runtime
context of a Work instance with additional contextual information flown-in from the EIS. This
contract enables a resource adapter to control, in a more flexible manner, the contexts in which the
Work instances submitted by it are executed by the application server’s WorkManager .

» Security work context. A standard contract that enables a resource adapter to establish security
information while submiting a Work instance for execution to a WorkManager and while
delivering messages to message endpoints residing in the application server. This contract provides
a mechanism to support the execution of a Work instance in the context of an established identity.
It also supports the propagation of user information/Principal information from an EIS to a
MessageEndpoint during Message Inflow.

Version 2.1 of Jakarta Connectors provides minor updates required for Jakarta EE 10 including
compiled with Java 11 Version 2.0 of Jakarta Connectors moves the old Java Connectors Architecture
specification to Jakarta EE.

2.3. Target Audience

The target audience for this specification includes:

EIS vendors and resource adapter providers
* Messaging system vendors
» Application server vendors and container providers
* Enterprise application developers and system integrators
* Enterprise tool and EAI vendors
The system-level contracts between an application server and an EIS are targeted towards EIS vendors

(or resource adapter providers, if the two roles are different) and application server vendors. The CCI
is targeted primarily towards enterprise tools and EAI vendors.

2.4. JDBC and Jakarta Connectors

The JavaTM DataBase Connectivity ("JDBCTM") API defines a standard Java API for accessing relational
databases. The JDBC technology provides an API for sending SQL statements to a database and
processing the tabular data returned by the database.

The connector architecture is a standard architecture for integrating Java EE applications with EISs
that are not relational databases. Each of these EISs currently provides a native function call API for
identifying a function to call, specifying its input data, and processing its output data. The goal of the
Common Client Interface (CCI) is to provide an EIS independent API for coding these EIS function calls.

The CCI is targeted at EIS development tools and other sophisticated users of EISs. The CCI provides a
way to minimize the EIS specific code required by such tools. Most Java EE developers will access EISs
using these tools rather than using CCI directly.

6 Jakarta Connectors

2.5. Relationship With Other Integration Technologies (JBI and SCA)

It is expected that many Java EE applications will combine relational database access using JDBC with
EIS access using EIS access tools based on CCI.

The connector architecture defines a standard SPI (Service Provider Interface) for integrating the
transaction, security, and connection management facilities of an application server with those of a
transactional resource manager. The JDBC 3.0 specification JDBC API Specification, version 4.1 specifies
the relationship of JDBC to the SPI specified in the connector architecture.

2.5. Relationship With Other Integration Technologies
(JBI and SCA)

The Enterprise Application Integration (EAI) and Business to Business integration (B2B) functional
space may be considered, in an abstract sense, as forms of network service composition. That is, in a
typical EAI/B2B scenario, an enterprise application may make use of network resources to realize some
of its functionality. In this context, the network resource may be a REST service, a SOAP service, a
database server, a JMS topic/queue, some legacy application, etc.

The Java Business Integration (JBI) and Service Component Architecture (SCA) are integration
technologies that come to mind in the EAI/B2B space. They allow the creation and consumption of such
network services. They enable the building of applications through composition of services in an
enterprise by adopting a Service Oriented Architecture (SOA). These technologies can be used to
implement integration with various forms of network resources that are not tied to a specific external
architectural style.

The Connector architecture covers the category of network resources that expose some form of
connection oriented protocol. Database servers, JMS systems, legacy apps, etc. typically fall into this
category of network resource. The Connector architecture is the mechanism that the Java EE platform
provides to simplify use of such network resources.

2.6. Organization

This document begins by describing the rationale and goals for creating a standard architecture to
integrate an application server with multiple heterogeneous EISs. It then describes the key concepts
relevant to the connector architecture. These sections provide an overview of the architecture.

This document then describes typical scenarios for using the connector architecture. This chapter
introduces the various roles and responsibilities involved in the development and deployment of
enterprise applications that integrate with multiple EISs.

After these descriptive sections, this document focuses on the prescriptive aspects of the connector
architecture.

Jakarta Connectors 7

2.7. Document Conventions

2.7. Document Conventions

A regular Palatino font is used for describing the connector architecture.

An italic font is used for paragraphs that contain descriptive notes providing clarifications.
A regular Courier font is used for Java source code, class, interface and method names.

The requirements section occurring in various chapters of this document highlight only the salient
requirements, but do not contain all the requirements. So, this entire document must be used as a
requirements specification.

Note that the scenarios described in this document are illustrative in scope. The intent of the scenarios
is not to specify a prescriptive way of implementing a particular contract.

This document uses the Jakarta Enterprise Beans component model to describe some scenarios. The
Jakarta Enterprise Beans specification (see Jakarta Enterprise Beans Specification, version 4.0 provides
the latest details of the component model.

8 Jakarta Connectors

3.1. Definitions

Chapter 3. Overview

This chapter introduces key concepts that are required to understand Jakarta Connectors. It lays down
a reference framework to facilitate a formal specification of the connector architecture in the
subsequent chapters of this document.

3.1. Definitions

3.1.1. Enterprise Information System (EIS)

An EIS provides the information infrastructure for an enterprise. An EIS offers a set of services to its
clients. These services are exposed to clients as local and/or remote interfaces. Examples of an EIS
include:

* Enterprise Resource Planning (ERP) system

* Mainframe transaction processing (TP) system

* Legacy database system
There are two aspects of an EIS:

» System level services - for example, SAP RFC, CICS ECI

* An application specific interface - for example, the table schema and specific stored procedures of a
database, the specific CICS TP program

3.1.2. Connector Architecture

An architecture for integrating Jakarta EE servers with EISs. There are two parts to this architecture:
an EIS vendor-provided resource adapter and an application server that allows this resource adapter
to be plugged in. This architecture defines a set of contracts (such as transactions, security, connection
management) that a resource adapter has to support to plug in to an application server.

These contracts support bi-directional communication (outbound and inbound) between an
application server and an EIS by way of a resource adapter. That is, the application server may use the
resource adapter for outbound communication to the EIS, and it may also use the resource adapter for
inbound communication from the EIS.

3.1.3. EIS Resource
An EIS resource provides EIS-specific functionality to its clients. Examples are:

* Arecord or set of records in a database system
* A business object in an ERP system

* A transaction program in a transaction processing system

Jakarta Connectors 9

3.1. Definitions

3.1.4. Resource Manager (RM)

A resource manager manages a set of shared EIS resources. A client requests access to a resource
manager to use its managed resources. A transactional resource manager can participate in
transactions that are externally controlled and coordinated by a transaction manager.

In the context of the connector architecture, a client of a resource manager can either be a middle-tier
application server or a client-tier application. A resource manager is typically in a different address
space or on a different machine from the client that accesses it.

This document refers to an EIS as a resource manager when it is mentioned in the context of
transaction management. Examples of resource managers are a database system, a mainframe TP
system, and an ERP system.

3.1.5. Managed Environment

A managed environment defines an operational environment for a Jakarta EE-based, multi-tier, web-
enabled application that accesses EISs. The application consists of one or more application
components—]Jakarta Enterprise Beans, Jakarta Server Pages, servlets—which are deployed on
containers. These containers can be one of the following:

* Web containers that host Jakarta Server Pages, servlets, and static HTML pages

* Enterprise Bean containers that host Enterprise Bean components

* Application client containers that host standalone application clients

3.1.6. Non-Managed Environment

A non-managed environment defines an operational environment for a two-tier application. An
application client directly uses a resource adapter to access the EIS, which defines the second tier of a
two-tier application.

3.1.7. Connection

A connection provides connectivity to a resource manager. It enables an application client to connect
to a resource manager, perform transactions, and access services provided by that resource manager.
A connection can be either transactional or non-transactional. Examples include a database connection
and an SAP R/3 connection. A connection to a resource manager may be used by a client for bi-
directional communication, depending on the capabilities of the resource manager.

3.1.8. Application Component

An application component can be a server-side component, such as an Jakarta Enterprise Bean, Jakarta
Server Page, or servlet, that is deployed, managed, and executed on an application server. It can also
be a component executed on the web-client tier but made available to the web-client by an application
server. Examples of the latter type of application component include a Java applet, and a DHTML page.

10 Jakarta Connectors

3.2. Rationale

3.1.9. Container

A container is a part of an application server that provides deployment and runtime support for
application components. It provides a federated view of the services provided by the underlying
application server for the application components. For more details on different types of standard
containers, refer to the Jakarta Enterprise Beans (see Jakarta™ Enterprise Beans Specification, Version
4.0, Jakarta Server Pages, and servlet specifications.

3.2. Rationale

This section describes the rationale behind Jakarta Connectors.

3.2.1. System Contracts

A standard architecture is needed to integrate various EISs with an application server. Without a
standard, EIS vendors and application server vendors may have to use vendor-specific architectures to
provide EIS integration.

Jakarta Connectors provides a Java solution to the problem of bi-directional connectivity between the
multitude of application servers and EISs. By using the Jakarta Connectors, it is no longer necessary for
EIS vendors to customize their product for each application server. An application server vendor who
conforms to the Jakarta Connectors also does not need to add custom code whenever it wants to extend
its application server to support connectivity to a new EIS.

Jakarta Connectors enables an EIS vendor to provide a standard resource adapter for its EIS. The
resource adapter plugs into an application server and provides the underlying infrastructure for the
integration between an EIS and the application server.

An application server vendor extends its system only once to support Jakarta Connectors and is then
assured of connectivity to multiple EISs. Likewise, an EIS vendor provides one standard resource
adapter and it has the capability to plug in to any application server that supports Jakarta Connectors.

The following figure shows that a standard EIS resource adapter can plug into multiple application
servers. Similarly, multiple resource adapters for different EISs can plug into an application server.
This system-level pluggability is made possible through Jakarta Connectors.

If there are m application servers and n EISs, Jakarta Connectors reduces the scope of the integration
problem from an m x n problem to an m + n problem.

Figure System Level Pluggability Between Application Servers and EISs

Jakarta Connectors 11

3.2. Rationale

Application server extension for
resource adapter pluggability

Standard resource adapter

Resource Adapters
Application Server

Enterprise Information Systems

—

Resource Adapter

Application Servers Enterprise Information System

3.2.2. Common Client Interface

An enterprise tools vendor provides tools that lead to a simple application programming model for EIS
access, thereby reducing the effort required in EIS integration. An EAI vendor provides a framework
that supports integration across multiple EISs. Both types of vendors need to integrate across
heterogeneous EISs.

Each EIS typically has a client API that is specific to the EIS. Examples of EIS client APIs are RFC for SAP
R/3 and ECI for CICS.

An enterprise tools vendor adapts different client APIs for target EISs to a common client API. The
adapted API is typically specific to a tools vendor and supports an application programming model
common across all EISs. Adapting the API requires significant effort on the part of a tools vendor. In
this case, the m X n integration problem applies to tools vendors.

Jakarta Connectors provides a solution for the m x n integration problem for tools and EAI vendors.
Jakarta Connectors specifies a standard Common Client Interface (CCI) that supports a common client
API across heterogeneous EISs.

All EIS resource adapters that support CCI are capable of being plugged into enterprise tools and EAI
frameworks in a standard way. A tools vendor need not do any API adoption; the vendor can focus on
providing its added value of simplifying EIS integration.

The CCI drastically reduces the effort and learning requirements for tools vendor by narrowing the
scope of an m x n problem to an m + n problem if there are m tools and n EISs.

12 Jakarta Connectors

3.3. Goals

3.3. Goals

Jakarta Connectors has been designed with the following goals:

» Simplify the development of scalable, secure, and transactional resource adapters for a wide range
of EISs—ERP systems, database systems, mainframe-based transaction processing systems.

* Be sufficiently general to cover a wide range of heterogeneous EISs. The sufficient generality of
Jakarta Connectors ensures that there are various implementation choices for different resource
adapters; each choice is based on the characteristics and mechanisms of an underlying EIS.

* Be not tied to a specific application server implementation, but applicable to all Jakarta EE
platform compliant application servers from multiple vendors.

* Provide a standard client API for enterprise tools and EAI vendors. The standard API will be
common across heterogeneous EISs.

» Express itself in a manner that allows an organization to unambiguously determine whether or not
an implementation is compatible.

* Be simple to understand and easy to follow, regardless of whether one is designing a resource
adapter for a particular EIS or developing/deploying application components that need to access
multiple EISs. This simplicity means Jakarta Connectors introduces only a few new concepts, and
places minimal implementation requirements so that it can be leveraged across different
integration scenarios and environments.

* Define contracts and responsibilities for various roles that provide pieces for standard bi-
directional connectivity to an EIS. This enables a standard resource adapter from a EIS vendor to
be pluggable across multiple application servers.

* Enable an enterprise application programmer in a non-managed application environment to
directly use the resource adapter to access the underlying EIS. This is in addition to managed access
to an EIS, with the resource adapter deployed in the middle-tier application server.

Jakarta Connectors 13

4.1. System Contracts

Chapter 4. Architecture of Jakarta Connectors

This chapter gives an overview of the architecture.

Multiple resource adapters—that is, one resource adapter per type of EIS—are pluggable into an
application server. This capability enables application components deployed on the application server
to access the underlying EISs.

An application server and an EIS collaborate to keep all system-level mechanisms—transactions,
security, and connection management—transparent from the application components. As a result, an
application component provider focuses on the development of business and presentation logic for its
application components and need not get involved in the system-level issues related to EIS integration.
This leads to an easier and faster cycle for the development of scalable, secure, and transactional
enterprise applications that require connectivity with multiple EISs.

Figure Overview of the Jakarta Connectors architecture

Container-Component
Contract

Application Component

Client API

System Contracts

Application Server

Resources Adapter

Enterprise Information
System

4.1. System Contracts

To achieve a standard system-level pluggability between application servers and EISs, Jakarta
Connectors defines a standard set of system-level contracts between an application server and an EIS.
The EIS side of these system-level contracts are implemented in a resource adapter.

A resource adapter is specific to an underlying EIS. It is a system-level software driver that is used by
an application server or an application component to connect to an EIS.

A resource adapter plugs into an application server. The resource adapter and application server
collaborate to provide the underlying mechanisms—transactions, security, connection pooling, and
dispatch to application components.

A resource adapter is used within the address space of the application server. Examples of resource
adapters are:

* A JDBC driver to connect to a relational database, as specified in the JDBC specification. For more

14 Jakarta Connectors

4.1. System Contracts

information on JDBC, see JDBC API Specification, version 4.1
* Aresource adapter to connect to an ERP system
* Aresource adapter to connect to a TP system

* Aresource adapter to plug-in a messaging system
A resource adapter may provide different types of connectivity between an application and an EIS.

* Outbound communication. The resource adapter allows an application to connect to an EIS
system and perform work. All communication is initiated by the application. In this case, the
resource adapter serves as a passive library for connecting to an EIS, and executes in the context of
the application threads.

* Inbound communication. The resource adapter allows an EIS to call application components and
perform work. All communication is initiated by the EIS. The resource adapter may request threads
from the application server or create its own threads.

* Bi-directional communication. The resource adapter supports both outbound and inbound
communication.

Jakarta Connectors defines the following set of standard contracts between an application server and
EIS:

* A connection management contract that enables an application server to pool connections to an
underlying EIS, and enables application components to connect to an EIS. This leads to a scalable
application environment that can support a large number of clients requiring access to EISs.

* A transaction management contract between the transaction manager and an EIS that supports
transactional access to EIS resource managers. This contract enables an application server to use a
transaction manager to manage transactions across multiple resource managers. This contract also
supports transactions that are managed internal to an EIS resource manager without the necessity
of involving an external transaction manager.

* A security contract that enables secure access to an EIS. This contract provides support for a secure
application environment that reduces security threats to the EIS and protects valuable information
resources managed by the EIS.

* A lifecycle management contract that allows an application server to manage the lifecycle of a
resource adapter. This contract provides a mechanism for the application server to bootstrap a
resource adapter instance during its deployment or application server startup, and to notify the
resource adapter instance during its undeployment or during an orderly shutdown of the
application server.

* A work management contract that allows a resource adapter to do work (monitor network
endpoints, call application components, etc.) by submitting Work instances to an application server
for execution. The application server dispatches threads to execute submitted Work instances. This
allows a resource adapter to avoid creating or managing threads directly, and allows an application
server to efficiently pool threads and have more control over its runtime environment. The
resource adapter can control the security context and transaction context with which Work

Jakarta Connectors 15

4.2.

Client API

instances are executed.

A generic work context contract that enables a resource adapter to control the execution context of
a Work instance that it has submitted to the application server for execution. The Generic Work
Context Contract provides the mechanism for a resource adapter to augment the runtime context
of a Work instance with additional contextual information flown-in from the EIS. This contract
enables a resource adapter to control, in a more flexible manner, the contexts in which the Work
instances submitted by it are executed by the application server’s WorkManager .

A transaction inflow contract that allows a resource adapter to propagate an imported transaction
to an application server. This contract also allows a resource adapter to transmit transaction
completion and crash recovery calls initiated by an EIS, and ensures that the ACID properties of the
imported transaction are preserved.

A security work context that enables a resource adapter to establish security information while
submiting a Work instance for execution to a WorkManager and while delivering messages to
message endpoints residing in the application server. This contract provides a mechanism to
support the execution of a Work instance in the context of an established identity. It also supports
the propagation of user information/Principal information from an EIS to a MessageEndpoint
during Message Inflow.

A message inflow contract that allows a resource adapter to asynchronously deliver messages to
message endpoints residing in the application server independent of the specific messaging style,
messaging semantics, and messaging infrastructure used to deliver messages. This contract also
serves as the standard message provider pluggability contract that allows a wide range of message
providers (Jakarta Messaging, Jakarta XML Web Services, etc.) to be plugged into any Jakarta EE
compatible application server by way of a resource adapter.

Overview of Jakarta Connectors Architecture does not illustrate any contracts that are internal to an
application server implementation. The specific mechanisms and contracts within an application
server are outside the scope of the connector architecture specification. This specification focuses on
the system-level contracts between the application server and the EIS.

Overview of Jakarta Connectors Architecture, the application server, application component and
resource adapter are shown as separate entities. This is done to illustrate that there is a logical
separation of the respective roles and responsibilities defined for the support of the system level
contracts. However, this separation does not imply a physical separation, as in an application server,
application component and a resource adapter running in separate processes.

4.2. Client API

The client API used by application components for EIS access may be defined as:

16

The standard Common Client Interface (CCI) as specified in Common Client Interface.

A client API specific to the type of a resource adapter and its underlying EIS. An example of such an
EIS specific client API is JDBC for relational databases.

Jakarta Connectors

4.3. Requirements

The Common Client Interface (CCI) defines a common client API for accessing EISs. The CCI is targeted
towards Enterprise Application Integration (EAI) and enterprise tools vendors.

4.3. Requirements

Jakarta Connectors requires that the Jakarta Connectors-compliant resource adapter and the
application server support the system contracts. Detailed requirements for each system contract are
specified in later chapters.

Jakarta Connectors recommends, though it does not mandate, that a resource adapter support CCI as
the client API. The recommendation enables Jakarta Connectors to provide a solution for the m x n
integration problem for application development tools and EAI vendors.

Jakarta Connectors allows a resource adapter with an EIS-specific client API to support system
contracts and to be capable of standard Jakarta Connectors-based pluggability into an application
server.

4.4. Non-Managed Environment

Jakarta Connectors supports access to EISs from non-managed application clients; for example, Java
applications and applets.

In a non-managed two-tier application environment, an application client directly uses a resource
adapter library. A resource adapter, in this case, exposes its low-level transactions and security APIs to
its clients. An application client has to take responsibility for managing security and transactions (and
rely on connection pooling if done by the resource adapter internally) by using the low-level APIs
exposed by the resource adapter. This model is similar to the way a two-tier JDBC application client
accesses a database system in a non-managed environment.

4.5. Standalone Container Environment

Server Providers can provide a Connector container within a product that implements the Jakarta EE
Full Profile or within a subset profile such as the Jakarta EE Web Profile. The complete set of
application server requirements in this specification is required for a compliant Jakarta EE Connectors
container within an implementation of the Jakarta EE Full Profile. The minimum set, listed below, must
be supported for a compliant Jakarta EE Connectors container within an implementation of any subset
of the Jakarta EE Full Profile. Overall profile requirements are described within the Jakarta™ EE
Platform Specification Version 10.

Non-"Full Profile” implementations may only support a subset of the component specifications that
were mandated to be present in a full Jakarta EE platform product implementation. An
implementation of the Connector specification bundled in such a managed environment is described
as standalone connector container below.

Based on the availability of other dependent component specification implementations, the following

Jakarta Connectors 17

4.5, Standalone Container Environment

requirements must be satisfied by a standalone connector container.

* If a MessageEndpointFactory implementation (such as support for message-driven beans) is
available, the Message Inflow requirements specified in Message Inflow must be satisfied by it.

 If an implementation of the Bean Validation specification is provided, the requirements in Jakarta™
Bean Validation Specification, Version 3.0 must be supported.

An existing resource adapter archive RAR may not be fully functional in a standalone implementation,
though. For example a bi-directional resource adapter archive deployed on a standalone
implementation that does not support Message Inflow would not have the corresponding Message
Inflow support (endpointActivation) provided to the resource adapter.

A standalone connector container implementation that does not support one of the dependent
component specification implementations listed above must not fail the deployment of a resource
adapter that uses the capabilities in the unsupported specifications. For instance, if a bi-directional
resource adapter is deployed to a standalone connector container that does not support Message
Inflow, the container will not be able to make calls to the endpointActivation method in the
ResourceAdapter JavaBean because the implementation does not support Message Inflow (and
therefore MessageEndpoint deployment). However, the container must support the deployment of a bi-
directional resource adapter and support other capabilities of the resource adapter that do not rely on
support for Message Inflow (outbound communication, use of the WorkManager etc.).

The standalone connector container must support the baseline compatibility requirements as defined
by the Jakarta™ Authentication specification and support the Security Inflow requirements specified in
Security Inflow. See Jakarta™ Authentication Specification, Version 3.0 for more information on the
Jakarta™ Authentication specification.

This specification does not define new application components or require any particular existing
application component to be supported in the standalone connector container environment.

18 Jakarta Connectors

5.1. Roles

Chapter 5. Roles and Scenarios

This chapter describes a set of roles specific to the connector architecture. The goal of this chapter is to
specify contracts that ensure that the output of each role is compatible with the input of the other role.
Later chapters specify a detailed set of responsibilities for each role, relative to the system-level
contracts.

5.1. Roles

This section describes the roles and responsibilities specific to the connector architecture.

5.1.1. Resource Adapter Provider

The resource adapter provider is an expert in the technology related to an EIS and is responsible for
providing a resource adapter for an EIS. Since this role is highly EIS specific, an EIS vendor typically
provides the resource adapter for its system.

A third-party vendor (who is not an EIS vendor) may also provide an EIS resource adapter and its
associated set of application development tools. Such a provider typically specializes in writing
resource adapters and related tools for a large number of EISs.

5.1.2. Application Server Vendor

The application server vendor provides an implementation of a Jakarta EE-compliant application
server that provides support for component based enterprise applications. A typical application server
vendor is an OS vendor, middleware vendor, or database vendor. The role of an application server
vendor is typically the same as that of a container provider.

The Jakarta EE platform specification (see Jakarta Platform, Enterprise Edition (Jakarta EE)
Specification, version 10) specifies requirements for a Jakarta EE platform provider.

5.1.3. Container Provider

The container provider is responsible for providing a container implementation for a specific type of
application component. For example, the container provider may provide a container for Jakarta
Enterprise Beans components. Each type of application component—]Jakarta Enterprise Bean, Jakarta
Servlet, Server Pages—has its own set of responsibilities for its container provider. The respective
specifications outline these responsibilities.

A container implementation typically provides the following functionality:

* It provides deployed application components with transaction and security management,
distribution of clients, scalable management of resources, and other services that are generally
required as part of a managed server platform.

Jakarta Connectors 19

5.1. Roles

* It provides application components with connectivity to an EIS by transparently managing security,
resources, and transactions using the system-level contracts with the EIS-specific resource adapter.

* It insulates application components from the specifics of the underlying system-level mechanisms
by supporting a simple, standard contract with the application component. Refer to the Jakarta
Enterprise Beans specification (Jakarta Enterprise Beans Specification, version 4.0) for more details
on the Jakarta Enterprise Beans component contract.

The expertise of the container provider is system-level programming, with its focus on the
development of a scalable, secure, and transaction-enabled container.

The container provider is also responsible for providing deployment tools necessary for the
deployment of application components and resource adapters. It is also required to provide runtime
support for the deployed application components.

The container provider typically provides tools that allow the system administrator to monitor and
manage a container and application components during runtime.

5.1.4. Application Component Provider

In the context of the connector architecture, the application component provider produces an
application component that accesses one or more EISs to provide its application functionality.

The application component provider is an application domain expert. In the case of application
components targeted towards integration with multiple EISs, various business tasks and entities are
implemented based on access to EIS data and functions.

The application component provider typically programs against easy-to-use Java abstractions
produced by application development tools. These Java abstractions are based on the Common Client
interface (CCI).

The application component provider is not required to be an expert at system level programming. The
application component provider does not program transactions, security, concurrency, or distribution,
but relies on a container to provide these services transparently.

The application component provider is responsible for specifying structural information for an
application component and its external dependencies. This information includes, for example, the
name and type of the connection factories, and security information.

The output of an application component provider is a Java™ Archive (JAR) file that contains the
application components and any additional Java classes required to connect to EISs.

5.1.5. Enterprise Tools Vendors

The application component provider relies on tools to simplify application development and EIS
integration. Since programming client access to EIS data and functions is a complex application
development task, an application development tool reduces the effort and complexity involved in this

20 Jakarta Connectors

5.1. Roles

task.
Enterprise tools serve different roles in the application development process, as follows:

* Data and function mining tool - enables application component providers to look at the scope and
structure of data and functions existing in an EIS

* Analysis and design tool - enables application component providers to design an application in
terms of EIS data and functions

» Code generation tool - generates Java classes for accessing EIS data and functions. A mapping tool
that bridges across two different programming models (object to relational or vice-versa) falls into
this category of tools.

» Application composition tool - enables application component providers to compose application
components from Java classes generated by a code generation tool. This type of tool typically uses
the JavaBeans™ component model to enhance the ease of programming and composition.

* Deployment tool - used by application component providers and deployers to set transaction,
security, and other deployment time requirements.

A number of these tools may be integrated together to form an end-to-end application development
environment.

In addition, various tools and middleware vendors offer EAI frameworks that simplify integration
across heterogeneous EISs.

5.1.6. Application Assembler

The application assembler combines various application components into a larger set of deployable
units. The input of the application assembler is one or more JAR files produced by an application
component provider and the output is one or more JAR files with a deployment descriptor. A
deployment descriptor may not be provided by the application assembler if metadata annotations (see
Metadata Annotations) are used to describe deployment information.

The application assembler is typically a domain expert who assembles application components to
produce an enterprise application. To achieve this goal, the application assembler takes application
components, possibly from multiple application component providers, and assembles these
components.

5.1.7. Deployer

The deployer takes one or more deployable units of application components, produced by the
application assembler or component provider, and deploys the application components in a target
operational environment. An operational environment is comprised of an application server and
multiple connected EISs.

The deployer is responsible for resolving all external dependencies declared by the application
component provider. For example, the deployer ensures that all connection factories used by the

Jakarta Connectors 21

5.2. Scenario: Integrated Purchase Order System

application components are present in an operational environment. To perform its role, the deployer
typically uses the application server-provided deployment tools.

The deployer is also responsible for the deployment of resource adapters. Since an operational
environment may include multiple EISs, the role of the deployer is more intensive and complex than
that in a non-EIS scenario. The deployer has to understand security, transaction, and connection
management-related aspects of multiple EISs that are configured in an operational environment.

5.1.8. System Administrator

The system administrator is responsible for the configuration and administration of a complete
enterprise infrastructure that includes multiple containers and EISs.

In an operational environment that has multiple EISs, the deployer should manage the operational
environment by working closely with the system administrators of respective EISs. This enables the
deployer to resolve deployment issues while deploying application components and resource adapters
in a target operational environment.

This chapter introduced the roles involved in the connector architecture. The later chapters specify
responsibilities for each role in more detail.

5.2. Scenario: Integrated Purchase Order System

This section describes a scenario that illustrates the use of the connector architecture. The following
description is kept at a high level. Specific scenarios related to transaction management, security,
connection management, and inbound communications are described in subsequent chapters.

The following diagram shows the different pieces that comprise this scenario:

5.2.1. Illustration of a Scenario Based on the Connector Architecture

22 Jakarta Connectors

5.2. Scenario: Integrated Purchase Order System

..

Container-Component
Contract
Purchase Order JEB

Common Client Interface

System Contracts
Resources Adapter
Application Server System Contracts
Resources Adapter

..

EIS Specific Interface

ERP System TP System

ERP Software Inc. is an enterprise system vendor that provides an enterprise resource planning (ERP)
system. ERP Software wants to integrate its ERP system with various application servers. It achieves
this goal by providing a standard resource adapter for its ERP system. The resource adapter for ERP
systems supports the standard inbound communication, transaction, connection management and
security contracts. The resource adapter also supports the Common Client Interface (CCI) as its client
API.

TPSoft Inc. is another enterprise system vendor that provides a transaction processing (TP) system.
TPSoft has also developed a standard resource adapter for its TP system. The resource adapter library
supports CCI as part of its implementation.

AppServer Inc. is a system vendor that has an application server product which supports the
development and deployment of component-based enterprise applications. This application server
product has an Jakarta Enterprise Beans container that provides deployment and runtime support for
Jakarta Enterprise Bean components. The application server supports the system-level contracts that
enable a resource adapter, which also supports these contracts, to plug into the application server and
provide bi-directional connectivity to the underlying EIS. The Jakarta Enterprise Beans container
insulates Jakarta Enterprise Bean components from the communication, transaction, security, and
connection management mechanisms required for connecting to the EIS.

Manufacturer Corp. is a big manufacturing firm that uses a purchase order processing system based
on the ERP system for its business processes. Recently, Manufacturer has acquired a firm that uses
TPSoft’s TP system for its purchase order processing. Manufacturer aims to integrate these two systems
together into a single integrated purchase order system. It requires a scalable, multi-user, secure,

Jakarta Connectors 23

5.3. Scenario: Business Integration

transaction-enabled integrated purchase order system that is not tied to a specific computing platform.
Manufacturer plans to deploy the middle-tier of this system on the application server from AppServer
Inc.

The MIS department of Manufacturer develops a PurchaseOrder Jakarta Enterprise Bean that provides
an integrated view of the two underlying purchase order systems. While developing PurchaseOrder
Jakarta Enterprise Bean, the bean provider does not program the transactions, security, connection
management or inbound communication mechanisms required for connectivity to the ERP and TP
systems; it relies on the Jakarta Enterprise Beans container and application server to provide these
services.

The bean provider uses an application programming model based on the CCI to access the business
objects and function modules for purchase order processing in the ERP system. The bean provider uses
a similar application programming model based on the CCI to access the purchase order processing
programs in the TP system.

The MIS department of Manufacturer assembles an integrated web-based purchase order application
using PurchaseOrder Jakarta Enterprise Bean with other types of application components, such as
Jakarta Server Pages and Jakarta Servlets.

The MIS department installs and configures the application server, ERP, and TP system as part of its
operational environment. It then deploys the integrated purchase order application on this operational
environment. As part of the deployment, the MIS department configures the operational environment
based on the deployment requirements for the various application components that have been
assembled into the integrated enterprise application.

After deploying and successfully testing the integrated purchase order system, the MIS department
makes the system available for other departments to use.

5.3. Scenario: Business Integration

This scenario illustrates the use of the connector architecture in a business integration scenario.

Wombat Systems is a manufacturing firm that aims to adopt an e-business strategy. Wombat has huge
existing investments in its EIS systems. The EISs include ERP systems, mainframe transaction
processing systems, and message providers.

Wombat requires to interact with its various partners. In order to do this, it requires support for
different interaction mechanisms. It also requires a mechanism to involve all its EIS systems in the
interaction. Further, it requires an application sever to host its business applications which participate
in the various interactions.

Wombat buys a Jakarta EE based application server from EComm, Inc. to host its business applications
which interact with its EISs and its various partners. The application server supports the connector
architecture contracts which make it possible to use appropriate resource adapters to drive
interactions with its partners and its EISs.

24 Jakarta Connectors

5.3. Scenario: Business Integration

The connector architecture enables Wombat to integrate its existing infrastructure with the application
server. Wombat buys off-the-shelf resource adapters for its existing set of EISs and to support
interactions with its partners and uses them to integrate its business applications (deployed on the
application server).

5.3.1. Connector Architecture Usage in Business Integration Scenario

Firm: Wombat Corp Supplier A

..

Web Clients
App Server Based on
Java based Jakarta EE
Application

Clients
XML over HTTP/s

Resource Adapters

Messaging System

External Client Applications

Internal Client Applications

..

Jakarta Connectors 25

6.1. Overview

Chapter 6. Lifecycle Management

This chapter specifies a contract between an application server and a resource adapter that allows an
application server to manage the lifecycle of a resource adapter. This contract provides a mechanism
for the application server to bootstrap a resource adapter instance during its deployment or
application server startup, and to notify the resource adapter instance during its undeployment or
during an orderly shutdown of the application server.

6.1. Overview

A resource adapter is a system component which is deployed in an application server. When a
resource adapter is deployed, or during application server startup, an application server requires to
bootstrap an instance of the resource adapter in its address space. When a resource adapter is
undeployed, or during application server shutdown, the application server requires a mechanism to
notify the resource adapter instance to stop functioning so that it can be safely unloaded.

The lifecycle management contract provides such a mechanism for an application server to manage
the lifecycle of a resource adapter instance. This allows an application server to bootstrap a resource
adapter instance during resource adapter deployment or application server startup and also to expose
some of its useful facilities to the resource adapter instance. It also provides a mechanism to notify the
resource adapter instance while it is undeployed or during an orderly shutdown of the application
server.

6.2. Goals

* Provide a mechanism for an application server to manage the lifecycle of a resource adapter
instance.

6.3. Lifecycle Management Model

Lifecycle Management Contract (Interfaces)

0000

Lifecycle Management (Object Diagram)

26 Jakarta Connectors

6.3. Lifecycle Management Model

Application Server Resource Adapter

start(BootstrapContext)
‘ Resource Adapter
stop(

getWorkManager()
BootstrapContext ‘ <
WorkManager ’

package jakarta.resource.spi;
import jakarta.resource.spi.work.WorkManager;
public interface ResourceAdapter {

void start(BootstrapContext) // startup notification
throws ResourceAdapterInternalException;

void stop(); // shutdown notification
... // other operations

public interface BootstrapContext {

WorkManager getWorkManager();
... // other operations

An application server implements the BootstrapContext and WorkManager interfaces. A resource
adapter implements the ResourceAdapter interface.

6.3.1. ResourceAdapter JavaBean and Bootstrapping a Resource Adapter
Instance

The implementation class name of the ResourceAdapter interface is specified in the resource adapter
deployment descriptor or through the Connector annotation described in @Connector. The
ResourceAdapter class must be a JavaBean. Refer to JavaBean Requirements. During resource adapter
deployment, the resource adapter deployer creates a ResourceAdapter JavaBean and configures it with
the appropriate properties.

When a resource adapter is deployed, or during application server startup, an application server

Jakarta Connectors 27

6.3. Lifecycle Management Model

bootstraps an instance of the resource adapter in its address space. In order to bootstrap a resource
adapter instance, the application server must use the configured ResourceAdapter JavaBean and call
its start method. The start method call is a startup notification from the application server, and this
method is called by an application server thread.

During the start method call the ResourceAdapter JavaBean is responsible for initializing the resource
adapter instance. This may involve creating resource adapter instance specific objects, creating
threads (refer to Work Management), and setting up network endpoints. A ResourceAdapter JavaBean
represents exactly one functional resource adapter unit or instance. The application server must
instantiate exactly one ResourceAdapter JavaBean per functional resource adapter instance. The
application server must create at least one functional resource adapter instance per resource adapter
deployment. An application server may create more than one functional resource adapter instance per
resource adapter deployment, in order to create replicas of a single functional resource adapter
instance on multiple Java™ Virtual Machines (2). In general, however, there should be just one
functional resource adapter instance per deployment.

The application server is allowed to have multiple instances of a ResourceAdapter JavaBean active
simultaneously, in the same JVM™ instance, provided the instances are not equal. Their equality is
determined using the equals method, and therefore, the ResourceAdapter JavaBean is required to
implement the equals method.

During the start method call, an application server must provide a BootstrapContext instance
containing references to some of the application server facilities (for example, WorkManager) for use
by the resource adapter instance. The application server facilities exposed through the
BootstrapContext instance may be used by the resource adapter instance during its lifetime.

During the start method call, the resource adapter instance initializes itself, and may use the
WorkManager to submit Work instances for execution (see Work Management). The start method call
should return in a timely manner, and should avoid blocking calls, such as use of doWork method call
on the WorkManager instance. The application server may throw a WorkRejectedException in
response to any or all doWork method calls on the WorkManager instance, in order to enforce that a
start method call does not block. Resource adapter implementations are strongly recommended to use
startWork and scheduleWork methods on the WorkManager , instead of the doWork method.

Any exception thrown during the start method call indicates an error condition, and the attempt by the
application server to create a resource adapter instance fails. A future version of the specification may
add a two-phase startup procedure.

A resource adapter instance at runtime may contain several objects that may be created and discarded
during its lifetime. Such objects include ManagedConnectionFactory JavaBean (refer to Connection
Management), ActivationSpec JavaBean (refer to Message Inflow), various connection objects, resource
adapter private objects, and other resource adapter specific objects that are exposed to applications.

The ResourceAdapter JavaBean represents a resource adapter instance and contains the configuration
information pertaining to that resource adapter instance. This configuration information may also be
used as global defaults for ManagedConnectionFactory and ActivationSpec JavaBeans. That is, when

28 Jakarta Connectors

6.3. Lifecycle Management Model

ManagedConnectionFactory or ActivationSpec JavaBeans are created they may inherit the global
defaults (ResourceAdapter JavaBean configuration information), which make it easier to configure
them.

A resource adapter instance may provide bi-directional connectivity to multiple EIS instances. A
ManagedConnectionFactory JavaBean can be used to provide outbound connectivity to a single EIS
instance. An ActivationSpec JavaBean can be used to provide inbound connectivity from an EIS
instance. A resource adapter instance may contain several such ManagedConnectionFactory and
ActivationSpec JavaBeans. The following figure describes the association between a resource adapter
instance and its various ManagedConnectionFactory and ActivationSpec JavaBeans.

Resource Adapter Instance (Composition)

Resource adapter instance
(within an application server)

Resource Adapter
JavaBean (exactly one)

..

ManagedConnectionFactory
Application < R JavaBean e >

Outbound Communication

ManagedConnectionFactory
Application QR avaBean ceee
pp

...

Inbound Communication

..

ManagedConnectionFactory
JavaBean

ManagedConnectionFactory
javaBean e > EIS Instance

...

Application < KR

Application < RS

.
.
.
.

6.3.2. ManagedConnectionFactory JavaBean and Outbound Communication

A ManagedConnectionFactory JavaBean represents outbound connectivity information to an EIS
instance from an application by way of a specific resource adapter instance. This contains the
configuration information pertaining to outbound connectivity to an EIS instance. Refer to Connection
Management for more details on the ManagedConnectionFactory JavaBean.

Jakarta Connectors 29

6.3. Lifecycle Management Model

When a ManagedConnectionFactory JavaBean is created, it may inherit the ResourceAdapter JavaBean
(which represents the resource adapter instance) configuration information, and overrides specific
global defaults, if any, and may add other configuration information specific to outbound connectivity.

That is, in the case of outbound communication, the outbound connectivity configuration is a union of
ResourceAdapter JavaBean and ManagedConnectionFactory JavaBean configuration, with the
intersecting configuration properties based on the ManagedConnectionFactory JavaBean settings.

Outbound communication is initiated by an application and the communication occurs in the context
of an application thread, even though resource adapter threads may be involved in the interaction.
Note, a resource adapter may use the work management contract (refer to Work Management) to
request threads to do work.

import jakarta.resource.spi.ResourceAdapterAssociation;
import jakarta.resource.spi.ManagedConnectionFactory;

public class ManagedConnectionFactoryImpl
implements ManagedConnectionFactory,
ResourceAdapterAssociation {

ResourceAdapter getResourceAdapter();
void setResourceAdapter(ResourceAdapter) throws ResourceException;

... // other methods

The ResourceAdapterAssociation interface specifies the methods to associate a
ManagedConnectionFactory JavaBean with a ResourceAdapter JavaBean.

Prior to using a ManagedConnectionFactory JavaBean, the application server must create an
association between the ManagedConnectionFactory JavaBean and a ResourceAdapter JavaBean, by
calling the setResourceAdapter method on the ManagedConnectionFactory JavaBean. A successful
association is established only when the setResourceAdapter method on the
ManagedConnectionFactory JavaBean returns without throwing an exception.

The setResourceAdapter method on the ManagedConnectionFactory JavaBean must be called exactly
once; that is, the association must not change during the lifetime of a ManagedConnectionFactory
JavaBean.

6.3.3. ActivationSpec JavaBean and Inbound Communication

An ActivationSpec JavaBean represents inbound connectivity information from an EIS instance to an
application by way of a specific resource adapter instance. This contains the configuration information
pertaining to inbound connectivity from an EIS instance. Refer to Message Inflow for more details on

30 Jakarta Connectors

6.3. Lifecycle Management Model

the ActivationSpec JavaBean.

When an ActivationSpec JavaBean is created, it may inherit the ResourceAdapter JavaBean (which
represents the resource adapter instance) configuration information, and overrides specific global
defaults, if any, and may add other configuration information specific to inbound connectivity.

That is, in the case of inbound communication, the inbound connectivity configuration is a union of
ResourceAdapter JavaBean and ActivationSpec JavaBean configuration, with the intersecting
configuration properties based on the ActivationSpec JavaBean settings.

Inbound communication is initiated by an EIS instance and the communication occurs in the context of
a resource adapter thread. There are no application threads involved. Note, a resource adapter may
use the work management contract (refer to Work Management) to request threads to do work.

import jakarta.resource.spi.ActivationSpec;
// ActivationSpec interface extends ResourceAdapterAssociation interface.
public class ActivationSpecImpl implements ActivationSpec {
ResourceAdapter getResourceAdapter();
void setResourceAdapter(ResourceAdapter) throws ResourceException;

... // other methods

The ResourceAdapterAssociation interface specifies the methods to associate an ActivationSpec
JavaBean with a ResourceAdapter JavaBean.

Prior to using an ActivationSpec JavaBean, the application server must create an association between
the ActivationSpec JavaBean and a ResourceAdapter JavaBean, by calling the setResourceAdapter
method on the ActivationSpec JavaBean. A successful association is established only when the
setResourceAdapter method on the ActivationSpec JavaBean returns without throwing an exception.

The setResourceAdapter method on the ActivationSpec JavaBean must be called exactly once; that is,
the association must not change during the lifetime of an ActivationSpec JavaBean.

6.3.4. Resource Adapter Shutdown Procedure

The following are some likely situations during which an application server would shutdown a
resource adapter instance:

* The application server is being shutdown.

* The resource adapter is being undeployed.

Jakarta Connectors 31

6.3. Lifecycle Management Model

Irrespective of what causes a resource adapter instance to be shutdown, the application server must
use the following two phases to shutdown a resource adapter instance.

6.3.4.1. Phase One

Before calling the stop method on the ResourceAdapter JavaBean, the application server must ensure
that all dependant applications using the specific resource adapter instance are stopped. This includes
deactivating all message endpoints receiving messages by way of the specific resource adapter. Note,
however, since dependant applications typically cannot be stopped until they are undeployed, the
application server may have to delay stopping the resource adapter instance, until all such dependant
applications are undeployed.

Completion of phase one guarantees that application threads will not use the resource adapter
instance, even though the resource adapter instance specific objects may still be in the memory heap.
This ensures that all application activities including transactional activities are completed.

Thus, phase one ensures that even if a resource adapter instance does not properly shutdown during
phase two, the resource adapter instance is practically unusable.

6.3.4.2. Phase Two

The application server calls the stop method on the ResourceAdapter JavaBean to notify the resource
adapter instance to stop functioning so that it can be safely unloaded. This is a graceful shutdown
notification from the application server, and this method is called by an application server thread.

The ResourceAdapter JavaBean is responsible for performing an orderly shutdown of the resource
adapter instance during the stop method call. This may involve closing network endpoints,
relinquishing threads, releasing all active Work instances, allowing resource adapter internal in-flight
transactions to complete if they are already in the process of doing a commit, and flushing any cached
data to the EIS.

The resource adapter instance is considered fully functional until the application server calls the stop
method on the ResourceAdapter JavaBean.

Any unchecked exception thrown by the stop method call does not alter the processing of the
application server shutdown or resource adapter undeployment that caused the stop method call. The
application server may log the exception information for error reporting purposes.

Note, it is possible for a resource adapter instance to become non-functional during its lifetime even
before the stop method is called, due to EIS failure or other reasons. In such cases, the resource
adapter instance should throw exceptions to indicate the failure condition, when it is accessed by an
application (during outbound communication) or the application server.

A future version of the specification may add a forced shutdown method in addition to the current
graceful stop method.

32 Jakarta Connectors

6.3. Lifecycle Management Model

6.3.5. Requirements

* The application server must use a new ResourceAdapter JavaBean for managing the lifecycle of
each resource adapter instance and must discard the ResourceAdapter JavaBean after its stop
method has been called. That is, the application server must not reuse the same ResourceAdapter
JavaBean object to manage multiple instances of a resource adapter, since the ResourceAdapter
JavaBean object may contain resource adapter instance specific state information.

* The application server must call the start method on the ResourceAdapter JavaBean (in order to
create a functional resource adapter instance), before accessing other methods on the
ResourceAdapter JavaBean instance or before using other objects that belong to the same resource
adapter instance.

* The application server thread which calls the start and the stop method on the ResourceAdapter
JavaBean executes in an unspecified context. However, the application server thread must have at
least the same level of security permissions as that of the resource adapter instance.

Resource Adapter Lifecycle (State Diagram)

Unconfigured The resource adapter deployer N Configured
resource adapter . . 7 resource adapter
configures the various JavaBean classes
Resourse
Adapter
N\
deploy Deployment Resource adapter
............. > Tool is deployed in the
undeploy application server
Resource v
Adapter
Deployer Application
Server
Application server calls start method N)
on the Resource Adapter JavaBean
Functional resource < Non-functional
adapter instance AN resource adapter
7
Application server calls stop method
on the Resource Adapter JavaBean
. . W
The start method of the Resource Adapter JavaBean is called each time a
resource adapter instance is created. This may be during resource adapter .
deployment, application server start, or other situations.

The stop method of the Resource Adapter JavaBean is called each time a
resource adapter instance is removed. This may be during resource
adapter undeployment, application server shutdown, or other situations.

Jakarta Connectors 33

6.3. Lifecycle Management Model

6.3.6. Resource Adapter Implementation Guidelines

The ResourceAdapter JavaBean should be treated as a central authority or registry for resource
adapter instance specific information, and it should have access to the overall state of the resource
adapter instance (network endpoints, etc.). This helps in the manageability of the resource adapter
instance, and in performing an orderly shutdown.

Some conventions to follow:

* Any resource adapter specific object (for example, ManagedConnectionFactory JavaBean,
ActivationSpec JavaBean, or others) which creates network endpoints should register them with
the ResourceAdapter JavaBean.

* The resource adapter threads should periodically scan the ResourceAdapter JavaBean state and
behave accordingly. It is desirable that such threads avoid boundless blocking on I/O calls, and
instead use a bounded blocking duration. This helps in resource adapter shutdown, and also
potentially avoids deadlock situations during shutdown.

The above conventions enable a ResourceAdapter JavaBean to effectively manage the resource adapter
instance and to perform an orderly shutdown of the resource adapter instance.

6.3.7. JavaBean Configuration and Deployment

There is at most one ResourceAdapter JavaBean instance per resource adapter instance. But there can
be many ManagedConnectionFactory, ActivationSpec or administered object instances (Administered
Objects) per resource adapter instance.

The ResourceAdapter JavaBean instance is created and configured during resource adapter
deployment. The ManagedConnectionFactory, ActivationSpec and administered object instances are
created and configured during the lifetime of a resource adapter instance.

At runtime, the resource adapter internally uses a union of the configured ResourceAdapter and
ManagedConnectionFactory JavaBean properties, to represent outbound communication configuration.

Similarly, at runtime, the resource adapter internally uses a union of the configured ResourceAdapter
and ActivationSpec JavaBean properties, to represent inbound communication configuration.

6.3.7.1. ResourceAdapter JavaBean Instance Configuration

* Create a ResourceAdapter JavaBean instance. This will initialize the instance with the defaults
specified by way of the JavaBean mechanism.

* Apply the ResourceAdapter class configuration properties specified in the resource adapter
deployment descriptor, on the ResourceAdapter instance. This may override some of the default
values specified through the JavaBean mechanism. The application server is required to merge
values specified by way of annotations and deployment descriptors as specified in Deployment
Descriptors and Annotations, before applying the ResourceAdapter class configuration properties.

34 Jakarta Connectors

6.3. Lifecycle Management Model

* The ResourceAdapter deployer may further override the values of the ResourceAdapter instance
before deployment.

6.3.7.2. Resource Adapter Deployment

The ResourceAdapter instance property values may be stored separately and reused later while
configuring ManagedConnectionFactory, ActivationSpec, or administered object instances.

6.3.7.3. ManagedConnectionFactory JavaBean Instance Configuration

* Create a ManagedConnectionFactory JavaBean instance. This will initialize the instance with the
defaults specified by way of the JavaBean mechanism.

* Apply the ResourceAdapter instance property values, that were stored earlier, on the
ManagedConnectionFactory instance. Note, that the ManagedConnectionFactory JavaBean may
have none, some or all of the properties of the ResourceAdapter JavaBean.

* Apply the ManagedConnectionFactory class configuration properties specified in the resource
adapter deployment descriptor, on the ManagedConnectionFactory instance.

» The application server is required to merge values specified by way of annotations and deployment
descriptors as specified in Deployment Descriptors and Annotations, before applying the
ManagedConnectionFactory class configuration properties.

* The ManagedConnectionFactory deployer may further override the values of the
ManagedConnectionFactory instance before deployment.

At runtime, the resource adapter internally uses a union of the configured ResourceAdapter and
ManagedConnectionFactory JavaBean properties, to represent outbound communication
configuration. Note, the ManagedConnectionFactory instance and the ResourceAdapter instance may
have intersecting property names. In such a situation, the wvalues specified in the
ManagedConnectionFactory instance takes precedence.

6.3.7.4. ActivationSpec JavaBean Instance Configuration

* Create an ActivationSpec JavaBean instance. This will initialize the instance with the defaults
specified by way of the JavaBean mechanism.

* Apply the ResourceAdapter instance property values, that were stored earlier, on the
ActivationSpec instance. Note, that the ActivationSpec JavaBean may have none, some, or all of the
properties of the ResourceAdapter JavaBean.

* Apply the ActivationSpec class configuration properties specified in the application deployment
descriptor, on the ActivationSpec instance.

» The application server is required to merge values specified by way of annotations and deployment
descriptors as specified in Deployment Descriptors and Annotations, before applying the
ActivationSpec class configuration properties.

* The ActivationSpec deployer may further override the values of the ActivationSpec instance before
deployment.

Jakarta Connectors 35

6.3. Lifecycle Management Model

At runtime, the resource adapter internally uses a union of the configured ResourceAdapter and
ActivationSpec JavaBean properties, to represent inbound communication configuration. Note, the
ActivationSpec instance and the ResourceAdapter instance may have intersecting property names. In
such a situation, the values specified in the ActivationSpec instance takes precedence.

6.3.7.5. JavaBean Validation

The Jakarta Bean Validation specification (see Jakarta Bean Validation Specification, version 3.0)
defines “a metadata model and API for JavaBean validation. The default metadata source is
annotations, with the ability to override and extend the meta-data through the use of XML validation
descriptors.”

The JavaBeans provided by the resource adapter implementation, like ResourceAdapter
ManagedConnectionFactory etc, may use the annotations or the XML validation descriptor facilities
defined by the Jakarta Bean Validation specification to express their validation requirements of its
configuration properties to the application server. A constraint annotation, can be applied to a
JavaBean type, on any of the type’s fields or on any of the JavaBeans-compliant properties.The use of
Jakarta Bean Validation constraint annotations by the resource adapter implementation as a self-
validation check behavior is optional.

The Jakarta Bean Validation specification defines a set of standard built-in constraints. The resource
adapter implementation is encouraged to use them instead of redefining custom annotations for the
same use cases. The resource adapter implementation may (but is not limited to) use the Jakarta Bean
Validation facilities for the following use cases:

* Range or limits specification. To ensure that the value provided by a deployer for a configuration
property falls within prescribed limits. The resource adapter implementation may use @Min ,
@Max , @Size constraints for this purpose.

* Mandatory attributes. To require the deployer to provide a value for a configuration property.
The resource adapter implementation may use the @NotNull constraint for this use case.

In the Jakarta EE 9 environment, as specified in the Jakarta EE platform specification, the Jakarta Bean
Validation facilities are available. The application server must check the validity of the configuration
settings provided by the deployer for a JavaBean, using the capabilities provided by the Jakarta Bean
Validation specification. This validation must be performed before using the JavaBean. This helps to
catch configuration errors earlier on without having to wait until the JavaBean is put to use. As the
application server may check the validation of the configuration settings at deployment time and
runtime, the constraint validation implementation must not make any assumptions of the availability
of a live resource adapter instance. The application server must support the decoration of the
following JavaBeans with constraint annotations:

* ResourceAdapter
* ManagedConnectionFactory

 ActivationSpec

36 Jakarta Connectors

6.3. Lifecycle Management Model

* Administered Objects

The application server must, by default, target the jakarta.validation.groups.Default group for
validation. The application server must validate the JavaBean by obtaining a Validator instance from
its ValidatorFactory and invoking the validate method with the targeted groups. If the set of
ConstraintViolation objects returned by the validate method is not empty, the application server must
fail validation by throwing the jakarta.validation.ConstraintValidationException containing a reference
to the returned set of ConstraintViolation objects, and must not put the JavaBean in use. The
application server must treat all JavaBean properties as “reachable” and “cascadable” as defined by
the BeanValidation Specification. For more details on reachability and cascaded validation, see Section
3.5 of the Jakarta Bean Validation Specification, version 3.0.

Application server configuration tools and third-party tools are recommended to leverage the
constraint metadata request API defined in the Jakarta Bean Validation specification to provide a
richer interaction model during configuration of the JavaBeans.

6.3.7.6. Configuration Property Attributes

Dynamic Reconfigurable Configuration Properties

Configuration properties whose values could be configured dynamically during the lifetime of the
JavaBean are referred to as dynamically reconfigurable configuration properties. A resource adapter
may indicate that a configuration property is dynamically reconfigurable through the config-property-
supports-dynamic-updates attribute in the deployment descriptor (see Resource Adapter XML Schema
Definition) or the supportsDynamicUpdates annotation element in the ConfigProperty annotation (see
@ConfigProperty).

Neither the application server nor the resource adapter must support the dynamic reconfiguration of
configuration properties. If an application server supports this feature and the resource adapter
employs JavaBean Validation (see JavaBean Validation), the application server must perform JavaBean
Validation after reconfiguring all the modified values of the JavaBean. When the JavaBean is validated,
the resource adapter can deduce that the reconfiguration has been completed by the deployer or
administrator.

Invalid reconfiguration of the state of a JavaBean by an application server may be indicated by the
resource adapter through the following means:

Throwing an exception when the field is updated

For configuration properties that can only be validated based on the state of other configuration
properties, throwing an exception during the validation phase.

Confidential Properties

Certain configuration properties of a JavaBean, such as Password (see Standard Properties for more
information on Password), may be confidential and must not be presented as clear text in
configuration tools. The resource adapter may indicate such properties as “Confidential Properties”

Jakarta Connectors 37

6.3. Lifecycle Management Model

through the config-property-confidential attribute in the deployment descriptor (see Resource Adapter
XML Schema Definition) or the confidentialProperty annotation element in the ConfigProperty
annotation (see @ConfigProperty). The application server’s configuration tool may use this attribute to
use special visual aids denoting confidentiality.

6.3.7.7. Resource Adapter Implementation Guidelines

A resource adapter implementation may choose to use common properties, that is, a
ManagedConnectionFactory or an ActivationSpec JavaBean, may contain some or all of the properties
of the ResourceAdapter JavaBean. The choice is up to the resource adapter implementation.

In general, there is no need for common properties, since these various objects are associated at
runtime with the ResourceAdapter JavaBean. However, there may be situations, for example, a
ManagedConnectionFactory JavaBean may need to override the ResourceAdapter JavaBean values in
order to successfully connect to a different EIS. In such a scenario, providing common properties
between the ResourceAdapter and ManagedConnectionFactory JavaBeans, allows the
ManagedConnectionFactory deployer to override the ResourceAdapter property values and configure
the ManagedConnectionFactory appropriately.

6.3.8. Lifecycle Management in a Non-Managed Environment

Although the lifecycle management contract is primarily intended for a managed environment, it may
still be used in a non-managed environment provided that the application that bootstraps a resource
adapter instance is capable of managing its lifecycle.

6.3.9. A Sample Resource Adapter Implementation

38 Jakarta Connectors

Sample Resource Adapter
package com.xyz.adapter;

import jakarta.resource.spi.ResourceAdapter;
import jakarta.resource.spi.BootstrapContext;
import jakarta.resource.spi.work.*;

public class MyResourceAdapterImpl implements ResourceAdapter {

void start(BootstrapContext serverCtx) {
// 1. setup network endpoints

// 2. get WorkManager reference
WorkManager wm = server(Ctx.getWorkManager();

// 3. provide Work objects to WorkManager
for (i =0; 1 <10; i++) {
Work work = new MyWork(...);
try {
wm. startWork(work);
} catch (WorkException we) {
// handle the exception

}
}

void stop() {
// release Work instances, do cleanup and return.
}
}

public class MyWork implements Work {
void release() {

// set a flag to hint the Work instance to complete.
// Note, the calling thread is different from

// the active thread in which this instance is executing.

}

void run() {
// do work (call application components, monitor
// network ports, etc.).

6.3. Lifecycle Management Model

Jakarta Connectors 39

6.3. Lifecycle Management Model

Lifecycle Management Model (Sequence Diagram)

Work

Jakarta EE WorkManager BootstrapContext ResourceAdapter

(from app server) (from app server) (from adapter) (from adapter)

app server

Application Server Startup

1. create an instance

2. create an instance (passhandle to WorkManager, etc.)

Resource adapter startup and bootstrap procedure. This may be when a resource
adapter is deployed or during server startup for those resource adapter instances

which had previously been deployed.

A\ 4

L 5. getWorkManager()

v

6. create Work instances

7. submit Work instances for execution
.

N

A\ 4

During runtime, the Resource adapter may submit more Work instances and use
dispatch contract to dispatch calls to application components, etc.

Resource adapter undeployment / app server shutdown

9. stop()

A\ 4

40 Jakarta Connectors

7.1. Overview

Chapter 7. Connection Management

This chapter specifies the connection management contract between an application server and a
resource adapter. It introduces the concepts and mechanisms relevant to this contract, and delineates
the responsibilities of the roles of the resource adapter provider and application server vendor in
terms of their system-level support for the connection management contract. To complete the
description of the connection management contract, this chapter also refers to the responsibilities of
the application component provider and deployer. The chapter includes scenarios to illustrate the
connection management contract.

7.1. Overview

An application component uses a connection factory to access a connection instance, which the
component then uses to connect to the underlying EIS. A resource adapter acts as a factory of
connections. Examples of connections include database connections, Jakarta Messaging connections,
and SAP R/3 connections.

Connection pooling manages connections that are expensive to create and destroy. Connection pooling
of expensive connections leads to better scalability and performance in an operational environment.
The connection management contract provides support for connection pooling.

7.2. Goals

The connection management contract has been designed with the following goals:

* To provide a consistent application programming model for connection acquisition for both
managed and non-managed (two-tier) applications.

* To enable a resource adapter to provide a connection factory and connection interfaces based on
the CCI specific to the type of resource adapter and EIS. This enables JDBC drivers to be aligned
with the connector architecture with minimum impact on the existing JDBC APIs.

* To provide a generic mechanism by which an application server can provide different
services—transactions, security, advanced pooling, error tracing/logging—for its configured set of
resource adapters.

» To provide support for connection pooling.

The goal of the Jakarta Connector Architecture is to enable efficient, scalable, and extensible
connection pooling mechanisms, not to specify a mechanism or implementation for connection
pooling. The goal is accomplished by defining a standard contract for connection management with the
providers of connections—that is, resource adapters. An application server should use the connection
management contract to implement a connection pooling mechanism in its own implementation-
specific way.

Jakarta Connectors 41

7.3. Architecture: Connection Management

7.3. Architecture: Connection Management

The connection management contract specifies an architected contract between an application server
and a resource adapter. This connection management contract is shown with bold flow lines in
Architecture Diagram: Managed Application scenario. It includes the set of interfaces shown in the
architecture diagram.

7.3.1. Overview: Managed Application Scenario

The application server uses the deployment information specified by way of the deployment descriptor
mechanism (specified in section Requirements) and metadata annotations (specified in Deployment
Descriptors and Annotations) to configure the resource adapter in the operational environment.

The resource adapter provides connection and connection factory interfaces. A connection factory acts
as a factory for EIS connections. For example, javax.sql.DataSource and java.sql.Connection interfaces
are JDBC-based interfaces for connecting to a relational database.

The CCI (specified in Common Client Interface) defines jakarta.resource.cci.ConnectionFactory and
jakarta.resource.cci.Connection as interfaces for a connection factory and a connection, respectively.

The application component does a lookup of a connection factory in the Java Naming and Directory
Interface™ (JNDI) name space. It uses the connection factory to get a connection to the underlying EIS.
The connection factory instance delegates the connection creation request to the ConnectionManager
instance.

The ConnectionManager enables the application server to provide different quality-of-services in the
managed application scenario. These quality-of-services include transaction management, security,
error logging and tracing, and connection pool management. The application server provides these
services in its own implementation-specific way. The connector architecture does not specify how the
application server implements these services.

The ConnectionManager instance , on receiving a connection creation request from the connection
factory , does a lookup in the connection pool provided by the application server. If there is no
connection in the pool that can satisfy the connection request, the application server uses the
ManagedConnectionFactory interface (implemented by the resource adapter) to create a new physical
connection to the underlying EIS. If the application server finds a matching connection in the pool, it
uses the matching ManagedConnection instance to satisfy the connection request.

If a new ManagedConnection instance 1is created, the application server adds the new
ManagedConnection instance to the connection pool.

The application server registers a ConnectionEventListener with the ManagedConnection instance. This
listener enables the application server to get event notifications related to the state of the
ManagedConnection instance. The application server uses these notifications to manage connection
pooling, manage transactions, cleanup connections, and handle any error conditions.

42 Jakarta Connectors

7.4. Application Programming Model

The application server uses the ManagedConnection instance to get a connection instance that acts as
an application-level handle to the wunderlying physical connection. An instance of type
jakarta.resource.cci.Connection is an example of such a connection handle. An application component
uses the connection handle to access EIS resources.

The resource adapter implements the XAResource interface to provide support for transaction
management. The resource adapter also implements the LocalTransaction interface so that the
application server can manage transactions internal to a resource manager. The chapter on
transaction management describes this transaction management contract between the application
server (and its transaction manager) and the resource adapter (and its underlying resource manager).

Architecture Diagram: Managed Application scenario

----- Architected Contract
Application Component
e Implementation Specific

Application Server

Resource Adapter

ConnectionManager ConnectionFactory Connection
.
.
.
.

v

SecurityService
Manager

Pool ManagedConnectionFactory

WA ManagedConnection
Transaction
Manager

N

LocalTransaction

XAResource

ConnectionEventListener

v v

Enterprise Information System (EIS)

7.4. Application Programming Model

The application programming model for getting an EIS connection is similar across both managed
(application server based) and non-managed scenarios. The following sections explain a typical
application programming model scenario.

Jakarta Connectors 43

7.4. Application Programming Model

7.4.1. Managed Application Scenario
The following steps are involved in a managed scenario:

1 The application assembler or component provider specifies connection factory requirements for an
application component using a deployment descriptor mechanism. For example, a bean provider
specifies the following elements in the deployment descriptor for a connection factory reference. Note
that the connection factory reference is part of the deployment descriptor for Jakarta Enterprise Bean
components and not the resource adapter. Refer Jakarta Enterprise Beans specification (see Jakarta
Enterprise Beans Specification, version 4.0) for details on the deployment mechanism for Jakarta
Enterprise Bean components:

* res-ref-name: eis/MyEIS

* res-type: jakarta.resource.cci.ConnectionFactory

* res-auth: Application or Container
2 During resource adapter deployment, the deployer sets the configuration information (example:
server name, port number) for the resource adapter. The application server uses a configured resource

adapter to create physical connections to the underlying EIS. Refer to API Requirements for details on
packaging and deployment of a resource adapter.

3 The application component looks up a connection factory instance in the component’s environment
using the JNDI interface.

// obtain the initial INDI Naming context
Context initctx = new InitialContext();

// perform INDI lookup to obtain the connection factory
jakarta.resource.cci.ConnectionFactory cxf =
(jakarta.resource.cci.ConnectionFactory)
initctx.lookup(“java:comp/env/eis/MyEIS”);

The JNDI name passed in the method NamingContext.lookup is the same as that specified in the res-ref-
name element of the deployment descriptor. The JNDI lookup results in a connection factory instance
of type jakarta.resource.cci.ConnectionFactory as specified in the res-type element.

4 The application component invokes the getConnection method on the connection factory to get an EIS
connection. The returned connection instance represents an application-level handle to an underlying
physical connection.

An application component obtains multiple connections by calling the method getConnection on the
connection factory multiple times.

jakarta.resource.cci.Connection cx = cxf.getConnection();

5 The application component uses the returned connection to access the underlying EIS by way of the

44 Jakarta Connectors

7.4. Application Programming Model

resource adapter. Common Client Interface specifies in detail the application programming model for
EIS access.

The JNDI context of an accessing application is available to a resource adapter
through the application thread that uses its connection object. The resource adapter
may use the JNDI context to access other resources.

6 After the component finishes with the connection, it closes the connection using the close method on
the Connection interface.

cx.close();

7 If an application component fails to close an allocated connection after its use, that connection is
considered an unused connection. The application server manages the cleanup of unused connections.
When a container terminates a component instance, the container cleans up all connections used by
that component instance. Refer section ManagedConnection and Scenario: Connection Event
Notifications and Connection Close for details on the cleanup of connections.

7.4.2. Non-Managed Application Scenario

In a non-managed application scenario, the application developer follows a similar programming
model to the managed application scenario. The non-managed case involves looking up of a connection
factory instance, getting an EIS connection, using the connection for EIS access, and finally closing the
connection.

7.4.3. Guidelines

Connection handles are application level handles to underlying physical connections and are light-
weight objects, especially when dissociated from the ManagedConnection . Creation of a connection
handle does not necessarily result in the creation of a new physical connection to the EIS. The
ManagedConnection , which represents the actual underlying physical connection, should maintain
any session or transaction state data associated with that connection to the EIS. An application
component may not derive much benefit from caching these handles, although this is allowed in this
specification. Application components are recommended to obtain and cache the Connection Factory
objects instead. For more information, see ConnectionFactory and Connection.

An application component is recommended to obtain a connection handle from the connection factory,
use the connection handle to interact with the EIS by way of the resource adapter, and close the
connection handle after finishing with it.

Jakarta Connectors 45

7.5. Interface/Class Specification

//recommended: connection handle creation, use and close
Connection con = null;
try {

con = cf.getConnection();

//use the con handle to interact with the EIS
} finally {

if (con != null){

con.close();

The application component is recommended to explicitly close the connection handle as soon as the
handle has been used and is not required later. This reduces the possibility of connection leaks and
enhances the application server’s ability to pool physical connections to the EIS (see Connection Pool
Implementation).

7.5. Interface/Class Specification

This section specifies the Java classes and interfaces defined as part of the connection management
contract. For a complete specification of these classes and interfaces, refer to the API documentation
distributed with this document.

The following figure shows the class hierarchy for the connection management contract. The diagram
also illustrates the responsibilities for the definition of an interface and its implementation:

Class Diagram: Connection Management Architecture

46 Jakarta Connectors

package: jakarta.resource.spi

<interface>
ConnectionManager

A\

<interface>
ManagedConnectionFactory

<interface>
ManagedConnection

<interface>
ManagedConnectionMetaData

>I

<interface>

ConnectionEventListener ~ FESRAS S Al

>I

<interface> .
LocalTransaction < -

package: (Application Server specific)
ConnectionManagerImpl

ConnectionEventListenerImpl

package: javax.transaction.xa

<interface>

XaRosonree P ATEETEERTT

......

7.5. Interface/Class Specification

package: jakarta.resource.cci

<interface> <interface>
ConnectionFactory Connection

package: Resource Adapter Specific

DefaultConnectionManager

ManagedConnectionFactoryImpl ConnectionImpl

ManagedConnectionImpl

0-1

ManagedConnection-
MetaDatalmpl

ConnectionFactoryImpl

LocalTransactionImpl

XAResourceImpl

----- Implements

e Inherits

7.5.1. ConnectionFactory and Connection [3]

A connection factory provides an interface to get a connection to an EIS instance. A connection
provides connectivity to an underlying EIS.

One goal of the Jakarta Connector Architecture is to support a consistent application programming
model across both CCI and EIS specific client APIs. To achieve this goal, the Jakarta Connector
Architecture recommends a design pattern (specified as an interface template) for both the connection
factory and connection interfaces.

The CCI connection factory and connection interfaces (defined in the package jakarta.resource.cci) are
based on the above design pattern. Refer to Connection Interfaces for details on the CCI connection
factory and connection interfaces. The following code sample shows the CCI interfaces:

Jakarta Connectors 47

7.5. Interface/Class Specification

public interface jakarta.resource.cci.ConnectionFactory extends java.io.Serializable,
jakarta.resource.Referenceable{

public jakarta.resource.cci.Connection getConnection()
throws jakarta.resource.ResourceException;

public interface jakarta.resource.cci.Connection {

public void close() throws jakarta.resource.ResourceException;

An example of a non-CCI interface is a resource adapter that uses the package com.myeis for its EIS
specific interfaces, as follows:

public interface com.myeis.ConnectionFactory extends java.io.Serializable,
jakarta.resource.Referenceable {

public com.myeis.Connection getConnection()
throws com.myeis.ResourceException;

public interface com.myeis.Connection {

public void close() throws com.myeis.ResourceException;

The JDBC interfaces— javax.sql.DataSource , java.sql.Connection —are examples of non-CCI connection
factory and connection interfaces.

Note that the methods defined on a non-CCI interface are not required to throw a ResourceException .
The exception can be specific to a resource adapter, for example: java.sqL.SQLException for JDBC (see
JDBC API Specification, version 4.1) interfaces.

The following are additional guidelines for the recommended interface template:

* A resource adapter is allowed to add additional getConnection methods to its definition of a
connection factory interface. These additional methods are specific to a resource adapter and its
EIS. For example, CCI defines a variant of the getConnection method that takes
jakarta.resource.cci.ConnectionSpec as a parameter.

48 Jakarta Connectors

7.5. Interface/Class Specification

* A resource adapter should only introduce additional getConnection methods if it requires
additional flexibility (beyond that offered by the default getConnection method) in the connection
request invocations.

* A connection interface must provide a close method to close the connection. The behavior of such
an application-level connection closure is described in the OID OID: Connection Event Notification.

The above design pattern leads to a consistent application programming model for connection creation
and connection closing.

7.5.1.1. Requirements

A resource adapter must provide implementations for both the connection factory and connection
interfaces.

In the Jakarta Connector Architecture, a resource adapter provides an implementation of the
connection factory interface in both managed and non-managed scenarios. This differs from the JDBC
(see JDBC API Specification, version 4.1) architecture.

In the JDBC architecture, an application server provides the implementation of javax.sql.DataSource
interface. Using a similar design approach for the connector architecture would have required an
application server to provide implementations of various connection factory interfaces defined by
different resource adapters. Since the connection factory interface may be defined as specific to an EIS,
the application server may find it difficult to provide implementations of connection factory interfaces
without any code generation.

The connection factory implementation class delegates the getConnection method invocation from an
application component to the associated ConnectionManager instance. The ConnectionManager
instance is associated with a connection factory instance at its instantiation [refer to the OID shown in
OID:Lookup of a ConnectionFactory Instance from JNDI].

Note that the connection factory implementation class must call the
ConnectionManager.allocateConnection method in the same thread context in which the application
component had called the getConnection method.

The connection factory implementation class is responsible for taking connection request information
and passing it in a form required by the ConnectionManager . allocateConnection method.

Jakarta Connectors 49

7.5. Interface/Class Specification

public interface jakarta.resource.spi.ConnectionManager
extends java.io.Serializable {

public Object allocateConnection(ManagedConnectionFactory mcf,
ConnectionRequestInfo cxRequestInfo)
throws ResourceException;

public interface jakarta.resource.spi.ConnectionRequestInfo {
public boolean equals(Object other);

public int hashCode();

7.5.1.2. ConnectionRequestInfo

The ConnectionRequestinfo parameter to the ConnectionManager.allocateConnection method enables a
resource adapter to pass its own request-specific data structure across the connection request flow.

A resource adapter extends the ConnectionRequestinfo interface to support its own data structure for
the connection request.

This is typically used to allow a resource adapter to handle application component-specified per-
connection request properties (for example, clientID and language). The application server passes
these properties to the createManagedConnection and matchManagedConnections method calls on the
ManagedConnectionFactory . These properties remain opaque to the application server during the
connection request flow.

It is important to note that the properties passed through the ConnectionRequestinfo instance should be
client-specific (for example, user name, password, language) and not related to the configuration of a
target EIS instance (for example, port number, server name).

The ManagedConnectionFactory instance is configured with properties required for the creation of a
connection to a specific EIS instance. Note that a configured ManagedConnectionFactory instance must
have the complete set of properties that are needed for the creation of the physical connections. This
enables the container to manage connection request without requiring an application component to
pass any explicit connection parameters. Configured properties on a ManagedConnectionFactory can
be overridden through ConnectionRequestinfo in cases when a component provides client-specific
properties in the getConnection method invocation. Refer to ResourceAdapter for details on the
configuration of a ManagedConnectionFactory .

When the ConnectionRequestinfo reaches the createManagedConnection or matchManagedConnections
methods on the ManagedConnectionFactory instance, the resource adapter uses this additional per-

50 Jakarta Connectors

7.5. Interface/Class Specification

request information to create and match connections.

A resource adapter must implement the equals and hashCode methods defined in the
ConnectionRequestInfo interface. The equality must be defined in the complete set of properties for the
ConnectionRequestInfo instance. An application server can use these methods to structure its
connection pool in an implementation-specific way. Since ConnectionRequestInfo represents a resource
adapter specific data structure, the conditions for equality are defined and implemented by a resource
adapter.

7.5.1.3. Additional Requirements

A resource adapter implementation is not required to support the mechanism for passing resource
adapter-specific connection request information. It can choose to pass null for ConnectionRequestInfo
in the allocateConnection invocation.

An implementation class for a connection factory interface must implement java.io.Serializable . This
enables a connection factory instance to be stored in the JNDI naming environment. A connection
factory implementation class must implement the interface jakarta.resource.Referenceable . Note that
the jakarta.resource.Referenceable interface extends the javax.naming.Referenceable interface. Refer to
section Scenario: Referenceable for details on the JNDI reference mechanism.

A connection implementation class implements its methods in a resource adapter implementation-
specific way. It must use a jakarta.resource.spi.ManagedConnection instance as its underlying physical
connection.

7.5.2. ConnectionManager

The jakarta.resource.spi.ConnectionManager interface provides a hook for a resource adapter to pass a
connection request to an application server. An application server provides different quality-of-service
as part of its handling of the connection request.

7.5.2.1. Interface
The connection management contract defines a standard interface for the ConnectionManager as

follows:

public interface jakarta.resource.spi.ConnectionManager
extends java.io.Serializable {

public Object allocateConnection(ManagedConnectionFactory mcf,

ConnectionRequestInfo cxRequestInfo)
throws ResourceException;

The method allocateConnection is called by a resource adapter’s connection factory instance so that the
instance can delegate a connection request to the ConnectionManager instance.

Jakarta Connectors 51

7.5. Interface/Class Specification

The ConnectionRequestinfo parameter represents information specific to a resource adapter to handle
the connection request.

7.5.2.2. Requirements

An application server must provide an implementation of the ConnectionManager interface. This
implementation is not specific to any particular resource adapter or connection factory interface.

The ConnectionManager implementation delegates to the internal mechanisms of an application server
to provide various services: security, connection pool management, transaction management, and
error logging and tracing.

An application server should implement these services in a generic manner, independent of any
resource adapter and EIS-specific mechanisms. The connector architecture does not specify how an
application server implements these services; the implementation is specific to each application
server.

After an application server hooks-in its services, the connection request is delegated to a
ManagedConnectionFactory instance either for the creation of a new physical connection or for the
matching of an already existing physical connection.

An implementation class for the ConnectionManager interface must implement the java.io.Serializable
interface.

A resource adapter must provide a default implementation of the
jakarta.resource.spi.ConnectionManager interface. The implementation class comes into play when a
resource adapter is used in a non-managed two-tier application scenario. In an application server-
managed environment, the resource adapter must not use the default ConnectionManager
implementation class. A default implementation of ConnectionManager enables the resource adapter
to provide services specific to itself. These services can include connection pooling, error logging and
tracing, and security management. The default ConnectionManager delegates to the
ManagedConnectionFactory the creation of physical connections to the underlying EIS.

An implementation of the ConnectionManager interface may only be provided by a resource adapter,
for the purpose described in this section, or by an application server that fully meets the requirements
of this specification.

ConnectionManager and Application Server Specific Services

52 Jakarta Connectors

7.5. Interface/Class Specification

...

1]
ConnectionManager e-— ConnectionFactory
. .
. .
. .
.

v

SecurityService

Manager :
Pool . - -
Manager - ManagedConnectionFactory

Transaction

Manager

7.5.3. ManagedConnectionFactory

A jakarta.resource.spi.ManagedConnectionFactory instance is a factory of both ManagedConnection and
connection factory instances. This interface supports connection pooling by defining methods for
matching and creating connections.

7.5.3.1. Interface

The following code extract shows the interface specification for the ManagedConnectionFactory .

Jakarta Connectors 53

7.5. Interface/Class Specification

public interface jakarta.resource.spi.ManagedConnectionFactory
extends java.io.Serializable {

public Object createConnectionFactory(ConnectionManager connectionManager)
throws ResourceException;

public Object createConnectionFactory()
throws ResourceException;

public ManagedConnection createManagedConnection(javax.security.auth.Subject
subject,
ConnectionRequestInfo cxRequestInfo)
throws ResourceException;

public ManagedConnection matchManagedConnections(java.util.Set connectionSet,
javax.security.auth.Subject
subject,
ConnectionRequestInfo
cxRequestInfo)
throws ResourceException;

public boolean equals(Object other);

public int hashCode();

The method createConnectionFactory creates a connection factory instance. For CCI, the connection
factory instance is of the type jakarta.resource.cci.ConnectionFactory . The connection factory instance
is initialized with the ConnectionManager instance provided by the application server.

When the createConnectionFactory method takes no arguments, ManagedConnectionFactory provides a
default ConnectionManager instance. This occurs in a non-managed application scenario.

The method createManagedConnection creates a new physical connection to the underlying EIS
instance. The ManagedConnectionFactory instance uses the security information (passed as a Subject
instance) and an optional ConnectionRequestInfo instance to create this new physical connection (refer
to Security Contract for more details).

A created ManagedConnection instance typically maintains internal information about the security
context (under which the connection has been created) and any connection-specific parameters (for
example, the socket connection).

The matchManagedConnections method enables the application server to use resource adapter-specific
criteria for matching a ManagedConnection instance to service a connection request. The application
server finds a candidate set of ManagedConnection instances from its connection pool based on
application server-specific criteria, and passes this candidate set to the matchManagedConnections

54 Jakarta Connectors

7.5. Interface/Class Specification

method. If the application server implements connection pooling, it must use the
matchManagedConnections method to choose a suitable connection.

The matchManagedConnections method matches a candidate set of connections using criteria known
internally to the resource adapter. The criteria used for matching connections is specific to a resource
adapter and is not specified by the connector architecture.

A ManagedConnection instance has specific internal state information based on its security context and
physical connection. The ManagedConnectionFactory implementation compares this information for
each ManagedConnection instance in the candidate set against the information passed in through the
matchManagedConnections method and the configuration of this ManagedConnectionFactory instance.
The ManagedConnectionFactory uses the results of this comparison to choose the ManagedConnection
instance that can best satisfy the current connection request.

If the resource adapter cannot find an acceptable ManagedConnection instance, it returns a null value .
In this case, the application server requests the resource adapter to create a new connection instance.

If the resource adapter does not support connection matching, it must throw a NotSupportedException
when matchManagedConnections method is invoked. This allows an application server to avoid pooling
connections obtained from that resource adapter.

7.5.3.2. Requirements

A resource adapter must provide an implementation of the ManagedConnectionFactory interface.

It is required that the ManagedConnectionFactory implementation class extend the implementation of
the hashCode and equals methods defined in java.lang.Object . These two methods are used by an
application server to structure its connection pool in an implementation-specific way. The equals and
hashCode method implementation should be based on a complete set of configuration properties that
make a ManagedConnectionFactory instance unique and specific to an EIS instance.

An implementation class for ManagedConnectionFactory interface must be a JavaBean. Refer to
JavaBean Requirements.

7.5.3.3. Connection Pool Implementation

The Jakarta Connector Architecture does not specify how an application server implements connection
pooling. However, it recommends that an application server should structure its connection pool such
that it uses the connection creation and matching facility in an efficient manner and does not cause
resource starvation.

The following paragraphs provide non-prescriptive guidelines for the connection pool implementation
by an application server.

An application server may partition its pool on a per ManagedConnectionFactory instance (and thereby
on a per EIS instance) basis. An application server may choose to guarantee, in an implementation
specific way, that it will always partition connection pools with at least per ManagedConnectionFactory

Jakarta Connectors 55

7.5. Interface/Class Specification

instance granularity.

The per- ManagedConnectionFactory instance pool may be further partitioned based on the transaction
or security context or any client-specific parameters (as associated with the ConnectionRequestInfo).
When an application server calls the matching facility, it is recommended that the application server
narrow down the candidate set of ManagedConnection instances to a reasonable limit, and achieves
matching efficiently. For example, an application server may pass only those ManagedConnection
instances to the matchManagedConnections method that are associated with the target
ManagedConnectionFactory instance (and thereby a specific target EIS instance).

An application server may use additional parameters for its search and matching criteria used in its
connection pool management. These parameters may be EIS- or application server- specific. The equals
and hashCode methods defined in both ManagedConnectionFactory and ConnectionRequestInfo
facilitate connection pool management and structuring by an application server.

7.5.3.4. Detecting Invalid Connections

import java.util.Set;
interface ValidatingManagedConnectionFactory {

Set getInvalidConnections(Set connectionSet) throws ResourceException;

This interface may be implemented by a ManagedConnectionFactory instance that supports the ability
to validate ManagedConnection objects. The getInvalidConnections method returns a set of invalid
ManagedConnection objects chosen from a specified set of ManagedConnection objects.

This optional functionality may be used by the application server to prune invalid ManagedConnection
objects from its connection pool periodically. The application server may use this functionality to test
for the validity of a ManagedConnection by passing in a Set of size one (with the ManagedConnection
that has to be tested for validity as the only member of the Set).

7.5.3.5. Requirement for XA Recovery

The ManagedConnectionFactory implementation for a transaction authority (XA) protocol capable
resource adapter (refer to Transaction Management for more details on transactions) must support the
createManagedConnection method that takes a Subject and a null for the parameter
ConnectionRequestInfo . This enables the application server to get an XAResource instance using
ManagedConnection.getXAResource and then call the XAResource.recover method. Note that the
application server uses this special case only to get to the XAResource instance for the underlying
resource manager.

The reason for this requirement is that the application server may not have a valid

56 Jakarta Connectors

7.5. Interface/Class Specification

ConnectionRequestInfo instance when it is required to get the ManagedConnection instance to initiate
recovery. Refer to ManagedConnectionFactory ~ for additional details on the
ManagedConnectionFactory.createManagedConnection method.

7.5.4. ManagedConnection

A jakarta.resource.spi.ManagedConnection instance represents a physical connection to an underlying
EIS.

The Jakarta Connector Architecture allows one or more ManagedConnection instances

9 to be multiplexed over a single physical pipe to an EIS. However, for simplicity, this
specification describes a ManagedConnection instance as being mapped 1-1 to a
physical connection.

The creation of a ManagedConnection instance typically results in the allocation of EIS and resource
adapter resources (for example, memory and network sockets) for each physical connection. Since
these resources can be costly and scarce, an application server pools ManagedConnection instances in a
managed environment.

Connection pooling improves the scalability of an application environment. An application server uses
the ManagedConnectionFactory and ManagedConnection interfaces to implement connection pool
management.

An application server also uses the transaction management-related methods (getXAResource and
getLocalTransaction) on the ManagedConnection interface to manage transactions. These methods are
discussed in more detail in Transaction Management.

The ManagedConnection interface also provides methods to support error logging and tracing in a
managed environment.

7.5.4.1. Interface

The connection management contract defines the following interface for a ManagedConnection . The
following code extract shows only the methods that are used for connection pool management. The
remaining methods are introduced in other parts of the specification.

Jakarta Connectors 57

7.5. Interface/Class Specification

public interface jakarta.resource.spi.ManagedConnection {

public Object getConnection(javax.security.auth.Subject subject,
ConnectionRequestInfo cxRequestInfo)
throws ResourceException;

public void destroy() throws ResourceException;

public void cleanup() throws ResourceException;

// Methods for Connection and transaction event notifications

public void addConnectionEventListener(ConnectionEventListener listener);
public void removeConnectionEventListener(ConnectionEventListener listener);
public ManagedConnectionMetaData getMetaData() throws ResourceException;

// Additional methods - specified in the other sections

The getConnection method creates a new application-level connection handle. A connection handle is
tied to an underlying physical connection represented by a ManagedConnection instance. For CCI, the
connection handle created by a ManagedConnection instance is of the type
jakarta.resource.cci.Connection . A connection handle is tied to its ManagedConnection instance in a
resource adapter implementation-specific way.

A ManagedConnection instance may use the getConnection method to change the state of the physical
connection based on the Subject and ConnectionRequestinfo arguments. For example, a resource
adapter can re-authenticate a physical connection to the underlying EIS when the application server
calls the getConnection method. ManagedConnection specifies re-authentication requirements in more
detail.

The method addConnectionEventListener allows a connection event listener to register with a
ManagedConnection instance. The ManagedConnection instance notifies connection close/error and
local transaction-related events to its registered set of listeners.

The removeConnectionEventListener method removes a registered ConnectionEventListener instance
from a ManagedConnection instance. Since an application server may modify the list of event listeners
at a time when the ManagedConnection may be iterating through its list of event listeners, the resource
adapter is recommended to handle this scenario by synchronizing access to its list of event listeners.

The method getMetaData returns the metadata information (represented by the

58 Jakarta Connectors

7.5. Interface/Class Specification
ManagedConnectionMetaData interface) for a ManagedConnection and the connected EIS instance.

7.5.4.2. Connection Sharing and Multiple Connection Handles

To support connection sharing, the application server can call getConnection multiple times on a
ManagedConnection instance. In this case, a call to the method ManagedConnection.getConnection does
not invalidate any previously created connection handles. Multiple connection handles can exist
concurrently for a single ManagedConnection instance. This design supports the connection sharing
mechanism. Refer to Connection Sharing for more details.

Because multiple connection handles to a single ManagedConnection can exist concurrently, a resource
adapter implementation may:

* Provide thread-safe semantics for a ManagedConnection implementation to support concurrent
access to a ManagedConnection instance from multiple connection handles. It is strongly
recommended that resource adapters provide support for concurrent access to a
ManagedConnection instance from multiple connection handles. This may be required in a future
release of the specification.

Ensure that there is at most one connection handle associated actively with a ManagedConnection
instance. The active connection handle is the only connection using the ManagedConnection
instance until an application-level close is called on this connection handle. The active connection
handle may also be modified by the container as a result of Connection Association (see Connection
Association) or the dissociation of a lazily associatable ManagedConnection (see Lazy Connection
Association Optimization). For example, a ManagedConnection.getConnection method
implementation associates a newly created connection handle as the active connection handle. Any
operations on the ManagedConnection from any previously created connection handles should
result in an application level exception. An example application level exception extends the
jakarta.resource.ResourceException interface and is specific to a resource adapter. A scenario
illustrating this implementation is shown in the Scenario: Local Transaction.

7.5.4.3. Connection Matching Contract

The application server invokes the ManagedConnectionFactory.matchManagedConnections method
(implemented by a resource adapter) to find a matching ManagedConnection for servicing a connection
request. The application server passes a candidate set of ManagedConnection instances to the
matchManagedConnections method.

The application server should use the connection matching contract for ManagedConnection instances
that have no existing connection handles. A candidate set passed to the matchManagedConnections
method should not have any ManagedConnection instances with existing connection handles.

There is no requirement that the matchManagedConnections implementation be capable of performing
a match across a candidate set that includes ManagedConnection instances with existing connection
handles. Note that a resource adapter can return a successful match with the requirement that the
ManagedConnection.getConnection method will later change the state of the matched
ManagedConnection . To avoid any unexpected matching behavior, the application server should not

Jakarta Connectors 59

7.5. Interface/Class Specification

pass a ManagedConnection instance with existing connection handles to the matchManagedConnections
method as part of a candidate set.

A connection request can lead to the creation of additional connection handles for a
ManagedConnection instance that already has one or more existing connection handles. In this case,
the application server should take the responsibility of checking whether or not the chosen
ManagedConnection instance can service such a request. Refer to Connection Sharing for details.

7.5.4.4. Cleanup of ManagedConnection

A resource adapter typically allocates system resources (outside a JVM instance) for a
ManagedConnection instance. Additionally, a ManagedConnection instance can have state specific to a
client, such as security context, data/function access structures, and result set from a query.

The method ManagedConnection.cleanup initiates a cleanup of any client-specific state maintained by a
ManagedConnection instance. The cleanup must invalidate all connection handles created using the
ManagedConnection instance. Any attempt by an application component to use the associated
connection handle after cleanup of the underlying ManagedConnection should result in an exception.

The container always drives the cleanup of a ManagedConnection instance. The container keeps track
of created connection handles in an implementation specific mechanism. It invokes
ManagedConnection.cleanup when it has to invalidate all connection handles associated with this
ManagedConnection instance and put the ManagedConnection instance back in to the pool. This may be
called after the end of a connection sharing scope or when the last associated connection handle is
closed for a ManagedConnection instance.

The invocation of the ManagedConnection.cleanup method on an already cleaned-up connection should
not throw an exception.

The cleanup of a ManagedConnection instance resets its client-specific state and prepares the
connection to be put back into a connection pool. The cleanup method should not cause the resource
adapter to close the physical pipe and reclaim system resources associated with the physical
connection.

An application server should explicitly call ManagedConnection.destroy to destroy a physical
connection. An application server should destroy a physical connection to manage the size of its
connection pool and to reclaim system resources.

A resource adapter should destroy all allocated system resources for this ManagedConnection instance
when the method destroy is called.

7.5.4.5. Requirements

A resource adapter must provide an implementation of the ManagedConnection interface.

60 Jakarta Connectors

7.5. Interface/Class Specification

7.5.5. ManagedConnectionMetaData

The method ManagedConnection.getMetaData returns a
jakarta.resource.spi.ManagedConnectionMetaData instance. @ The ManagedConnectionMetaData
provides information about a ManagedConnection and the connected EIS instance. This information is
only available to the caller of this method if a valid physical connection exists for an EIS instance.

7.5.5.1. Interface

The ManagedConnectionMetaData interface provides the following information about an EIS instance:

e Product name of the EIS instance
e Product version of the EIS instance

* Maximum number of concurrent connections from different processes that an EIS instance can
support

e User name for this connection, as known to the EIS instance
The method getUserName returns the user name known to the underlying EIS instance for an active

connection. The name corresponds to the resource principal under whose security context the
connection to the EIS instance has been established.

7.5.5.2. Requirements

A resource adapter must provide an implementation of the ManagedConnectionMetaData interface. An
instance of this implementation class should be returned from the ManagedConnection.getMetaData
method.

7.5.6. ConnectionEventListener

The Jakarta Connector Architecture provides an event callback mechanism that enables an application
server to receive notifications from a ManagedConnection instance. An application server uses these
event notifications to manage its connection pool, to clean up invalid or terminated connections, and
to manage local transactions. Transaction Management discusses local transaction-related event
notifications in more detail.

An application server implements the jakarta.resource.spi.ConnectionEventListener interface. It uses
the ManagedConnection.addConnectionEventListener method to register a connection listener with a
ManagedConnection instance.

7.5.6.1. Interface

The following code extract specifies the ConnectionEventListener interface:

Jakarta Connectors 61

7.5. Interface/Class Specification

public interface jakarta.resource.spi.ConnectionEventListener {
public void connectionClosed(ConnectionEvent event);

public void connectionErrorOccurred(ConnectionEvent event);

// Local Transaction Management related events

public void localTransactionStarted(ConnectionEvent event);
public void localTransactionCommitted(ConnectionEvent event);

public void localTransactionRolledback(ConnectionEvent event);

A ManagedConnection instance calls the ConnectionEventListener.connectionClosed method to notify its
registered set of listeners when an application component closes a connection handle. The application
server uses this connection close event to make a decision on whether or not to put the
ManagedConnection instance back into the connection pool.

The ManagedConnection instance calls the ConnectionEventListener.connectionErrorOccurred method
to notify its registered listeners of the occurrence of a physical connection-related error. The event
notification happens just before a resource adapter throws an exception to the application component
using the connection handle.

The connectionErrorOccurred method indicates that the associated ManagedConnection instance is now
invalid and unusable. The application server handles the connection error event notification by
initiating application server-specific cleanup (for example, removing ManagedConnection instance
from the connection pool) and then calling ManagedConnection.destroy method to destroy the physical
connection.

A ManagedConnection instance also notifies its registered listeners for transaction-related events by
calling the following methods—localTransactionStarted, localTransactionCommitted, and
localTransactionRolledback. An application server uses these notifications to manage local
transactions. See Local Transaction Management Contract for details on the local transaction
management.

The processing of event notifications by the registered event listeners may be synchronous or
asynchronous. That is, a listener may process an event notification immediately (as part of the
notification method call) or it may defer event processing to a later in time. The resource adapter must
not assume the processing of event notifications by its listeners to be synchronous or asynchronous.

62 Jakarta Connectors

7.6. Error Logging and Tracing

7.5.7. ConnectionEvent

A jakarta.resource.spi.ConnectionEvent class provides information about the source of a connection-
related event. A ConnectionEvent instance contains the following information:
» Type of the connection event

* ManagedConnection instance that has generated the connection event. A ManagedConnection
instance is returned from the ConnectionEvent.getSource method.

* Connection handle associated with the ManagedConnection instance; required for the
CONNECTION_CLOSED event and optional for the other event types.

* Optionally, an exception indicating a connection related error. Refer to System Exceptions for
details on the system exception. Note that the exception 1is wused for the
CONNECTION_ERROR_OCCURRED notification.

This class defines the following types of event notifications: * CONNECTION_CLOSED *
LOCAL_TRANSACTION_STARTED * LOCAL_TRANSACTION_COMMITTED *
LOCAL_TRANSACTION_ROLLEDBACK * CONNECTION_ERROR_OCCURRED

7.6. Error Logging and Tracing

The Jakarta Connector Architecture provides basic support for error logging and tracing in both
managed and non-managed environments. This support enables an application server to detect errors
related to a resource adapter and its EIS, and to use error information for debugging.

7.6.1. ManagedConnectionFactory

The jakarta.resource.spi.ManagedConnectionFactory interface defines the following methods for error
logging and tracing:

public interface jakarta.resource.spi.ManagedConnectionFactory
extends java.io.Serializable {

public void setlLogWriter(java.io.PrintWriter out)
throws ResourceException;

public java.io.PrintWriter getlLogWriter()
throws ResourceException;

The log writer is a character output stream to which all logging and tracing messages for a
ManagedConnectionFactory instance are printed.

Jakarta Connectors 63

7.7. Object Diagram

A character output stream can be registered with a ManagedConnectionFactory instance using the
setLogWriter method. A ManagedConnectionFactory implementation uses this character output stream
to output error log and trace information.

An application server manages the association of a log writer with a ManagedConnectionFactory .
When a ManagedConnectionFactory instance is created, the log writer is initially null and logging is
disabled. Associating a log writer with a ManagedConnectionFactory instance enables logging and
tracing for the ManagedConnectionFactory instance.

An application server administrator primarily uses the error and trace information printed on a log
writer by a ManagedConnectionFactory instance. This information is typically system-level in nature
(for example, information related to connection pooling and transactions) rather than of direct interest
to application developers.

7.6.2. ManagedConnection

The jakarta.resource.spi. ManagedConnection interface defines the following methods to support error
logging and tracing specific to a physical connection.

public interface jakarta.resource.spi.ManagedConnection {

public void setlLogWriter(java.io.PrintWriter out)
throws ResourceException;

public java.io.PrintWriter getlLogWriter()
throws ResourceException;

A newly created ManagedConnection instance gets the default log writer from the
ManagedConnectionFactory instance that creates the ManagedConnection instance. The default log
writer can be overridden by an application server using the ManagedConnection.setLogWriter method.
The setting of the log writer on a ManagedConnection enables an application server to manage error
logging and tracing specific to the physical connection represented by a ManagedConnection instance.

An application server can optionally disassociate the log writer from a ManagedConnection instance
when this connection instance is put back into the connection pool by using setLogWriter and passing
null .

7.7. Object Diagram

The following shows the object diagram for the connection management architecture. It shows
invocations across the various object instances that correspond to the architected interfaces in the
connection management contract, as opposed to those instances specific to implementations of the
application server and the resource adapter.

64 Jakarta Connectors

7.8. Illustrative Scenarios

To keep the diagram simple, it does not show the transaction management contract-related interfaces (
XAResource and LocalTransaction) and invocations.

Object Diagram: Connection Management Architecture

Application Component

. . . - ° .
Application Server . c. Resource Adapter
ccc 'c.-c-0-0-c-c'-'c-c-c-c-c-c-o-o-ococo-
. .
ConnectionManager Lo ConnectionFactory- *
allocation connection
y
S
. .
A)
. A
L . . create .
application server specific .o new instance “

.

\V4 : .
s . N .
SecurityService c . Managecf@gnnecuonlfactory . .
. (Y N
. .
Manager T . e ResourceAdapter .
* create new instance specific ’

. . S
........................ ,'
* . . ’
> . ’ creat
. . . # create
-~ ’
createManagedConnection .~ . S new

matchManagedConnections e . ? instance
createConnectionFactory - .)

-add/removeConnectionEventListener

Pool Manager . getConnection .
. o . Managed
+ Connection

Transaction
Manager

N :
application server specific EIS specific

Connection Event

.
. .
.
.
. .
‘(.o notifications
. .
. .

.......................................

ConnectionEventListener

Architected Interface

Enterprise Information System (EIS)

""" Instantiation

""" Implementation Specific

7.8. Illustrative Scenarios

This section uses sequence diagrams to illustrate various interactions between the object instances
involved in the connection management contract.

Some sequence diagrams include a box labeled “Application Server”. This box refers to various
modules and classes internal to an application server. These modules and classes communicate
through contracts that are application server implementation specific.

Jakarta Connectors 65

7.8. Ilustrative Scenarios

In this section, the CCI interfaces— jakarta.resource.cci.ConnectionFactory and
jakarta.resource.cci.Connection —represent connection factory and connection interfaces respectively.

The description of these sequence diagrams does not include transaction-related details. These are
covered in Transaction Management.

7.8.1. Scenario: Connection Pool Management

The following object interactions are involved in the scenario shown in OID: Connection Event
Notification:

* The application component calls the getConnection method on the
jakarta.resource.cci.ConnectionFactory instance (returned from the JNDI lookup) to get a
connection to the underlying EIS instance. Refer to JNDI Configuration and Lookup for details on
the JNDI configuration and lookup.

» The ConnectionFactory instance initially handles the connection request from the application
component in a resource adapter specific way. It then delegates the connection request to the
associated ConnectionManager instance. The ConnectionManager instance has been associated with
the ConnectionFactory instance when the ConnectionFactory was instantiated. The
ConnectionFactory instance receives all connection request information passed through the
getConnection method and, in turn, passes it in a form required by the method ConnectionManager
. allocateConnection . The ConnectionRequestInfo parameter to the allocateConnection method
enables a ConnectionFactory implementation class to pass on client-specific connection request
information. This information is opaque to an application server and is used subsequently by a
resource adapter to do connection matching and creation.

* The ConnectionManager instance (provided by the application server) handles the
allocateConnection request by interacting with the application server specific connection pool
manager. The interaction between a ConnectionManager instance and pool manager is internal and
specific to an application server.

* The application server finds a candidate set of ManagedConnection instances from its connection
pool. The candidate set includes all ManagedConnection instances that the application server
considers suitable for handling the current connection allocation request. The application server
finds the candidate set using its own implementation-specific structuring and lookup criteria for
the connection pool. Refer to ManagedConnectionFactory for guidelines of connection pool
implementation by an application.

If the application server finds no matching ManagedConnection instance that can best handle this
connection allocation request, or if the candidate set is empty, the application server calls the
ManagedConnectionFactory.createManagedConnection method to create a new physical connection
to the underlying EIS instance. The application server passes necessary security information (as
JAAS Subject) as part of this method invocation. For details on the security contract, refer to the
Security Management chapter. It can also pass the ConnectionRequestinfo information to the
resource adapter. The connection request information has been associated with the connection
allocation request by the resource adapter and is used during connection creation.

66 Jakarta Connectors

7.8. Illustrative Scenarios

* The ManagedConnectionFactory instance creates a new physical connection to the underlying EIS to
handle the createManagedConnection method. This new physical connection is represented by a
ManagedConnection instance. The ManagedConnectionFactory uses the security information
(passed as a Subject instance), ConnectionRequestinfo , and its default set of configured properties
(port number, server name) to create a new ManagedConnection instance. Refer to Security
Contract for more details on the createManagedConnection method.

* The ManagedConnectionFactory instance initializes the created ManagedConnection instance and
returns it to the application server.

* The application server registers a ConnectionEventListener instance with the ManagedConnection
instance, enabling it to receive notifications for events on this connection. The application server
uses these event notifications to manage connection pooling and transactions.

» The ManagedConnection instance obtains its log writer (for error logging and tracing support) from
the ManagedConnectionFactory instance that created this connection. However, an application
server can set a new log writer with a ManagedConnection instance to do additional error logging
and tracing at the level of a ManagedConnection .

» The application server does the necessary transactional setup for the ManagedConnection instance.
Transaction Management explains this step in more detail.

* Next, the application server calls ManagedConnection.getConnection method to get an application
level connection handle of type jakarta.resource.cci.Connection . A ManagedConnection instance
uses the Subject and ConnectionRequestInfo parameters to the getConnection method to change the
state of the ManagedConnection . Calling the getConnection method does not necessarily create a
new physical connection to the EIS instance. Calling getConnection produces a temporary
connection handle that is used by an application component to access the underlying physical
connection. The actual underlying physical connection is represented by a ManagedConnection
instance.

* The application server returns the connection handle to the resource adapter. The resource
adapter then passes the connection handle to the application component that initiated the
connection request.

OID: Connection Pool Management with New Connection Creation

Jakarta Connectors 67

7.8. Ilustrative Scenarios

Resource Adapter

Resource Adapter
ManagedConnectionFactory

Application Transaction XAResources

Application jakarta.resource.cci.

Component i r 5 .
p ConnectionFactory Manager ManagedConnection

Server

getConnection

N4

ConnectionManager.allocateConnection

AN
7

Application server hooks up a candidate
connection set from the connection pool

createManagedConnection
S
7

create a new instance

addConnectionEventListener(ConnectionEventListener)

A4

Optional: setLogWriter(PrintWriter)

A 4

Application server performs transactional setup for the
ManagedConnection instance. For example, application

server performs following setup for JTA transactions

getXAResource

Transaction.enlistResource(XAResource)

XAResource.start(XID) > .
...

getConnection(Subject, ConnectionRequestInfo)

return jakarta.resource.cci.Connection

N

return jakarta.resource.cci.Connection

\

7.8.2. Scenario: Connection Matching

OID: Connection Pool Management with Connection Matching shows the object interactions for a
connection matching scenario—that is, a scenario in which the application server finds a non-empty
candidate connection set and calls the resource adapter to do matching on the candidate set. The

following steps are involved in this scenario:

1. The application server handles the connection allocation request by creating a candidate set of
ManagedConnection instances from the connection pool. The candidate set includes the
ManagedConnection instances that the application server considers suitable for handling the

68 Jakarta Connectors

7.8. Illustrative Scenarios

current connection allocation request. The application server finds this candidate set using its own
implementation-specific structuring and lookup criteria for the connection pool. Refer to
ManagedConnectionFactory for guidelines on connection pool implementation by an application.

2. The application server calls the ManagedConnectionFactory.matchManaged-Connections method to
enable the resource adapter to do the connection matching. It passes the candidate connection set,
security information (as a Subject instance associated with the current connection request), and
any ConnectionRequestInfo .

3. The ManagedConnectionFactory instance matches the candidate set of connections using the
criteria known internally to the resource adapter. The matchManagedConnections method returns
a ManagedConnection instance that the resource adapter considers to be an acceptable match for
the current connection allocation request.

4. The application server can set a new log writer with the ManagedConnection instance to do error
logging and tracing at the level of the ManagedConnection.

5. The application server does the necessary transactional setup for the ManagedConnection instance.
Transaction Management explains this step in more detail.

6. The application server calls the ManagedConnection.getConnection method to get a new application
level connection handle.

7. The ManagedConnection.getConnection method implementation uses the Subject parameter and any
ConnectionRequestInfo to set the state of the ManagedConnection instance based on the current
connection allocation request. Refer to ManagedConnection for details if a resource adapter
implements support for re-authentication of a ManagedConnection instance.

8. The application server returns the connection handle to the resource adapter. The resource
adapter then passes the connection handle to the application component that initiated the
connection request.

OID: Connection Pool Management with Connection Matching

Jakarta Connectors 69

7.8. Ilustrative Scenarios

Resource Adapter

Resource Adapter

ManagedConnectionFactory

Application Transaction XAResources

Application jakarta.resource.cci.

Component ConnectionFactory Server Manager ManagedConnection

getConnection

WV

ConnectionManager.allocateConnection

N
rd

Application server hooks up a candidate

connection set from the connection pool

matchManagedConnection

addConnectionEventListener(ConnectionEventListener)

A 4

A\ 4

Optional: setLogWriter(PrintWriter)

v

Application server performs transactional setup for the
ManagedConnection instance. For example, application

server performs following setup for JTA transactions

Transaction.enlistResource(XAResource)

................. > >

Lo XAResource.start(XID) > .

getConnection(Subject, ConnectionRequestInfo)

return jakarta.resource.cci.Connection

N\

return jakarta.resource.cci.Connection

\

7.8.3. Scenario: Connection Event Notifications and Connection Close

For each ManagedConnection instance in the pool, the application server registers a
ConnectionEventListener instance to receive close and error events on the connection. This scenario
explains how the connection event callback mechanism enables an application server to manage

connection pooling.

The scenario involves the following steps (see OID: Connection Event Notification) when an application
component initiates a connection close:

1. The application component releases an allocated connection handle using the close method on the

70 Jakarta Connectors

7.8. Illustrative Scenarios

jakarta.resource.cci.Connection instance. The Connection instance delegates the close method to the
associated ManagedConnection instance. The delegation happens through an association between
ManagedConnection instance and the corresponding connection handle Connection instance. The
mechanism by which this association is achieved is specific to the implementation of a resource
adapter.

2. The connection management contract places a requirement that a ManagedConnection instance
must not alter the state of a physical connection while handling the connection close.

3. The ManagedConnection instance notifies all its registered listeners of the application’s connection
close request using the ConnectionEventListener . connectionClosed method. It passes a
ConnectionEvent instance with the event type set to CONNECTION_CLOSED .

4. On receiving the connection close event notification, the application server performs the
transaction management-related cleanup of the ManagedConnection instance. Refer to OID:
Connection Event Notification for details on the cleanup of a ManagedConnection instance
participating in a Jakarta Transactions transaction.

5. The application server also uses the connection close event notification to manage its connection
pool. On receiving the connection close notification, the application server -calls the
ManagedConnection.cleanup method (depending on whether the ManagedConnection is shared and
the presence of other active connection handles) to perform cleanup on the ManagedConnection
instance that raised the connection close event. The application server-initiated cleanup of a
ManagedConnection instance prepares this ManagedConnection instance to be reused for
subsequent connection requests. See Connection Sharing for a discussion of connection sharing
and its implications on ManagedConnection cleanup.

6. After initiating the necessary cleanup for the ManagedConnection instance, the application server
puts the ManagedConnection instance back into the connection pool. The application server should
be able to use this available ManagedConnection instance to handle future connection allocation
requests from application components.

7.8.3.1. Connection Cleanup

The application server can also initiate cleanup of a ManagedConnection instance when the container
terminates the application component instance that has the corresponding connection handle. The
application server should call ManagedConnection.cleanup to initiate the connection cleanup. After the
cleanup, the application server puts the ManagedConnection instance into the pool to serve future
allocation requests.

7.8.3.2. Connection Destroy

To manage the size of the connection pool, the application server can call ManagedConnection.destroy
method to destroy a ManagedConnection. A ManagedConnection instance handles this method call by
closing the physical connection to the EIS instance and releasing all system resources held by this
instance.

The application server also calls ManagedConnection.destroy when it receives a connection error event

Jakarta Connectors 71

7.9. Architecture: Non-Managed Environment

notification that signals a fatal error on the physical connection.

OID: Connection Event Notification

Resource Adapter Resource Adapter
- . ManagedConnectionFactor
Application jakarta.resource.cci. Application Transaction XAResgources ’
Component ConnectionFactory Server Manager ManagedConnection

dose() Internal: Resource Adapter implementation specific

N4
A\ 4

Application server hooks up
a candidate connection set

from the connection pool

connectionClosed(ConnectionEvent: CONNECTION_CLOSED)
ya

..

. ' ! Transaction.enlistResource(XAResource)

: >

XAResource.start(XID)

...

ManagedConnection.cleanup

Application Server returns ManagedConnection instance

to the connection pool

7.9. Architecture: Non-Managed Environment

The connection management contract enables a resource adapter to be used in a two-tier application
directly from an application client.

In a non-managed application scenario, the ConnectionManager implementation class may be provided

72 Jakarta Connectors

7.9. Architecture: Non-Managed Environment

either by a resource adapter (as a default ConnectionManager implementation) or by application
developers. Note that a default implementation of the ConnectionManager should be defined for a
resource adapter (in terms of the functionality provided and third-party components added) only at
development time.

The default ConnectionManager instance interposes on the connection request and delegates the
request to the ManagedConnectionFactory instance. The ManagedConnectionFactory creates a physical
connection (represented by a ManagedConnection instance) to the wunderlying EIS. The
ConnectionManager gets a connection handle (of type jakarta.resource.cci.Connection for CCI) from the
ManagedConnection and returns it to the connection factory. The connection factory returns the
connection handle to the application.

A resource adapter supports interactions (shown as light shaded lines in the following figure) between
its internal objects in an implementation-specific way. For example, a resource adapter can use the
connection event listening mechanism as part of its ManagedConnection implementation for
connection management. However, the resource adapter is not required to use the connection event
mechanism to drive its internal interactions.

Architecture Diagram: Non-Managed Application Scenario

----- Architected contract
Application Component
e Implement